Skip to main content

Smart Interactive Paints - The Effect of Dispergation on Color Characteristics

  • Conference paper
  • First Online:
Advances in Manufacturing III (MANUFACTURING 2022)

Abstract

Safety in mechanical engineering is still a topical issue and preventive techniques can prevent workplace injuries. The article focuses on the introduction of a new thermochromic coating system, its development, and its properties. These systems can be used in environments exposed to temperature as an element of active safety. Therefore, if a worker notices a change in color in an exposed area, he will be visually alerted to unsafe contact or a subsequent burn injury. Two series of paints were created with different dispersion methods. The resulting coatings were examined in terms of mechanical properties and especially their color characteristics, which determine the quality and durability of the coating. We verified the safe applicability by long-term monitoring and we can predict the thermochromic behavior of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aklujkar, P.S., Kandasubramanian, B.: A review of microencapsulated thermochromic coatings for sustainable building applications. J. Coat. Technol. Res. 18(1), 19–37 (2020). https://doi.org/10.1007/s11998-020-00396-3

    Article  Google Scholar 

  2. Bamfield, P., Hutchins, M.G.: Chromic Phenomena: Technological Applications of Colour Chemistry, 2nd edn. Royal Society of Chemistry, Cambridge (2010)

    Google Scholar 

  3. Brychta, P., Franců, M.: Vybrané kapitoly z plastické chirurgie a popáleninové medicíny. Brno (2010). https://www.med.muni.cz/Traumatologie/Popaleniny/Popaleniny.htm

  4. BOZP v číslech a grafech. BOZP Statistiky. Praha (2021). http://statistikybozp.vubp.cz/

  5. Day, J.H.: Thermochromism. Chem. Rev. 63(1), 65–80 (1963). https://doi.org/10.1021/cr60221a005

    Article  Google Scholar 

  6. Dawson, T.L.: Changing colors: now you see them, now you don’t. Color. Technol. 126, 177–188 (2010). https://doi.org/10.1111/j.1478-4408.2010.00247.x

    Article  Google Scholar 

  7. Drbout, V., Háková, M., Kudláček, J., Tatíčková, Z., Kreibich, V.: Nová termochromická nátěrová hmota s akrylátovým základem. Functional Sample (2019)

    Google Scholar 

  8. Drbout, V., Háková, M., Kudláček, J., Tatíčková, Z., Kreibich, V.: Nová termochromická nátěrová hmota s polyuretanovým základem. Functional Sample (2019)

    Google Scholar 

  9. Hajzeri, M., Bašnec, K., Bele, M., Gunde Klanjšek, M.: Influence of developer on structural, optical and thermal properties of a benzofluoran-based thermochromic composite. Dyes Pigm. 113, 754–762 (2015). https://doi.org/10.1016/j.dyepig.2014.10.014

    Article  Google Scholar 

  10. Karlessi, T., Santamouris, M., Apostolakis, K., Synnefa, A., Livada, I.: Development and testing of thermochromic coatings for buildings and urban structures. Sol. Energy 83(4), 538–551 (2009). https://doi.org/10.1016/j.solener.2008.10.005

    Article  Google Scholar 

  11. Kim, I.J., Ramalingam, M., Son, Y.-A.: Investigation of reversible self-thermochromism in microencapsulated fluoran-based materials. Dyes Pigm. 151, 64–74 (2018). https://doi.org/10.1016/j.dyepig.2017.12.047

    Article  Google Scholar 

  12. Li, Y., Wang, Q., Zheng, X., Li, Y., Luan, J.: Microcapsule encapsulated with leuco dye as a visual sensor for concrete damage indication via color variation. RSC Adv. 10(3), 1226–1231 (2020). https://doi.org/10.1039/C9RA09492J

    Article  Google Scholar 

  13. Ma, Y., Zhu, B., Wu, K.: Preparation of reversible thermochromic building coatings and their properties. J. Coat. Technol. 72, 67–71 (2000). https://doi.org/10.1007/BF02720527

    Article  Google Scholar 

  14. MacLaren, D., White, M.A.: Design rules for reversible thermochromic mixtures. J. Mater. Sci. 40(3), 669–676 (2005). https://doi.org/10.1007/s10853-005-6305-x

    Article  Google Scholar 

  15. Özkayalar, S., Adigüzel, E., Aksoy, S.A., Alkan, C.: Reversible color-changing and thermal-energy storing nanocapsules of three-component thermochromic dyes. Mater. Chem. Phys. 252, 12 (2020). https://doi.org/10.1016/j.matchemphys.2020.123162

    Article  Google Scholar 

  16. Panák, O., Držková, M., Kaplanová, M.: Insight into the evaluation of colour changes of leuco dye based thermochromic systems as a function of temperature. Dyes Pigm. 120, 279–287 (2015). https://doi.org/10.1016/j.dyepig.2015.04.022

    Article  Google Scholar 

  17. Panák, O., Držková, M., Kaplanová, M., Novak, U., Gunde Klanjšek, M.: The relation between colour and structural changes in thermochromic systems comprising crystal violet lactone, bisphenol A, and tetradecanol. Dyes Pigm. 136, 382–389 (2017). https://doi.org/10.1016/j.dyepig.2016.08.050

    Article  Google Scholar 

  18. Product information list: Apex Pigments. Littleport (2014)

    Google Scholar 

  19. Seeboth, A., Lötzsch, D.: Thermochromic and thermotropic materials. Pan Stanford, Singapore (2014)

    Google Scholar 

  20. Zheng, S., Xu, Y., Shen, Q., Yang, H.: Preparation of thermochromic coatings and their energy saving analysis. Sol. Energy 112, 263–271 (2015). https://doi.org/10.1016/j.solener.2014.09.049

    Article  Google Scholar 

  21. Rossi, S., Simeoni, M., Quaranta, A.: Behavior of chromogenic pigments and influence of binder in organic smart coatings. Dyes Pigm. 184, 19 (2021). https://doi.org/10.1016/j.dyepig.2020.108879

    Article  Google Scholar 

  22. Tang, H., MacLaren, D., White, M.A.: New insights concerning the mechanism of reversible thermochromic mixtures. Can. J. Chem. 88(11), 1063–1070 (2010). https://doi.org/10.1139/V10-069

    Article  Google Scholar 

  23. Tatíčková, Z., Kudláček, J., Heller, J., Matas, F., Pepelnjak, T.: Interactive painting systems. In: IN-TECH 2015 - International Conference on Innovative Technologies, pp. 447–450. Faculty of Engineering University of Rijeka, Rijeka (2015)

    Google Scholar 

  24. Tatíčková, Z., Kudláček, J., Heller, J.: Interactive thermosensitive painting systems for safety purposes. In: IN-TECH 2018 International Conference on Innovative Technologies, pp. 227–230. Faculty of Engineering University of Rijeka, Zagreb (2018)

    Google Scholar 

  25. Tatíčková, Z., Kreibich, V., Kudláček, J., Svoboda, J.: Thermochromic painting systems – a new approach to increase occupational safety. In: METAL 2021 30th Anniversary International Conference on Metallurgy and Materials, vol. 30, pp. 593–599. Tanger, Brno (2021). https://doi.org/10.37904/metal.2021.4187

  26. Zhu, C.F., Wu, A.B.: Studies on the synthesis and thermochromic properties of crystal violet lactone and its reversible thermochromic complexes. Thermochim. Acta 425(1–2), 7–12 (2005). https://doi.org/10.1016/j.tca.2003.08.001

    Article  Google Scholar 

  27. Vik, M., Periyasamy, A.P.: Chromic Materials: Fundaments, Measurements, and Applications. Apple Academic Press, Canada (2018)

    Book  Google Scholar 

Download references

Acknowledgements

Research and experimental verification was carried out within the solution of the project CTU SGS22/OHK2/3T/12 - Influence of surface treatments on the quality of production technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Tatíčková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tatíčková, Z., Zoubek, M., Kudláček, J., Kuchař, J., Kreibich, V. (2022). Smart Interactive Paints - The Effect of Dispergation on Color Characteristics. In: Gapiński, B., Ciszak, O., Ivanov, V. (eds) Advances in Manufacturing III. MANUFACTURING 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-00805-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00805-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00804-7

  • Online ISBN: 978-3-031-00805-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics