Skip to main content

Biomedical Applications of Fibers Produced by Electrospinning, Microfluidic Spinning and Combinations of Both

  • Chapter
  • First Online:
Electrospun Nanofibers

Abstract

Electrospinning and microfluidic spinning are two fascinating techniques used in the production of micro- and/or nano-fiber meshes with possible application in many scientific areas. Their ability to mimic the extracellular matrix of many tissues, high surface area, and porosity, and even their ability to create different fibrous structures according to their target application, justify their interest in the biomedical field. In this review, we present a detailed overview of two fiber processing methodologies—electrospinning and microfluidic spinning. The basic set-ups, the functional control of the process, the different types of fiber morphology and structures obtained, and their applications, most specifically in the biomedical field will address tissue-engineered scaffolds, wound healing, and drug delivery. Moreover, the production of fibrous systems combining electrospinning and microfluidics in innovative ways is also generating a growing interest in the scientific community. Hybrid technologies, usually engineered by the integration of electrospun fiber mats within a microfluidic chip, are also included in this review. The methods and the applications of those technologies such as hybrid tissue-engineered in vitro models, lab-on-a-chip devices, and platforms for in vitro cancer research are described. Furthermore, their challenges and future perspectives will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersson, M., Jia, Q., Abella, A., Lee, X.-Y., Landreh, M., Purhonen, P. et al. (2017). Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nature Chemical Biology, [Internet] 13(3), 262–264. Available from: https://doi.org/10.1038/nchembio.2269

  2. Vollrath, F., & Knight, D. P. (2001). Liquid crystalline spinning of spider silk. Nature, 410(6828), 541–548.

    Article  CAS  Google Scholar 

  3. Heim, M., Keerl, D., & Scheibel, T. (2009). Spider silk: From soluble protein to extraordinary fiber. Angewandte Chemie International Edition, 48(20), 3584–3596.

    Article  CAS  Google Scholar 

  4. McIntyre, J. E. (2004). Synthetic fibres: Nylon, polyester, acrylic, polyolefin (1st ed.). In: J. E. McIntyre (Ed.), Synthetic fibres: Nylon, polyester, acrylic, polyolefin (1–300 p). Woodhead Publishing.

    Google Scholar 

  5. Bosman, F. T., & Stamenkovic, I. (2003). Functional structure and composition of the extracellular matrix. The Journal of Pathology, 200(4), 423–428.

    Article  CAS  Google Scholar 

  6. Martins, A., Alves da Silva, M., Costa-Pinto, A., Reis, R. L., & Neves, N. M. (2014). Bio-inspired integration of natural materials. In: A. B. Brennan & C. M. Kirschner (Eds.), Bio-inspired materials for biomedical engineering (1st ed.) Wiley, pp. 101–130.

    Google Scholar 

  7. Karuppuswamy, P., & Reddy, J. (2014) Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications. Applied Surface Science [Internet] 322, 162–168. Available from: https://doi.org/10.1016/j.apsusc.2014.10.074

  8. Heydarkhan-Hagvall, S., Schenke-Layland, K., Dhanasopon, A. P., Rofail, F., Smith, H., Wu, B. M., et al. (2008). Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials, 29(19), 2907–2914.

    Article  CAS  Google Scholar 

  9. Yoshimoto, H., Shin, Y. M., Terai, H., & Vacanti, J. P. (2003). A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 24(12), 2077–2082.

    Article  CAS  Google Scholar 

  10. Giannitelli, S. M., Costantini, M., Basoli, F., Trombetta, M., & Rainer, A. (2018) Electrospinning and microfluidics: An integrated approach for tissue engineering and cancer. In: V. G. L. Ambrosio (Ed.), Electrofluidodynamic technologies (EFDTs) for biomaterials and medical devices: Principles and advances [Internet], 1st ed. Elsevier Ltd. pp. 139–155. Available from: https://doi.org/10.1016/B978-0-08-101745-6.00008-6

  11. Liu, Y., Yang, D., Yu, T., & Jiang, X. (2009). Incorporation of electrospun nanofibrous PVDF membranes into a microfluidic chip assembled by PDMS and scotch tape for immunoassays. Electrophoresis, 30(18), 3269–3275.

    Article  CAS  Google Scholar 

  12. Chen, S., Li, R., Li, X., Xie, J. (2018). Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Advanced Drug Delivery Reviews [Internet] 132, 188–213. Available from: https://doi.org/10.1016/j.addr.2018.05.001

  13. Rayleigh, L. (2009, September 28). On the equilibrium of liquid conducting masses charged with electricity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science [Internet] 1882 [cited 2 November, 2018] 14(87), 184–186. Available from: https://www.tandfonline.com/doi/full/10.1080/14786448208628425

  14. Tucker, N., Stanger, J. J., Staiger, M. P., Razzaq, H., & Hofman, K. (2012). The history of the science and technology of electrospinning from 1600 to 1995. Journal of Engineered Fibers and Fabrics, 7(3), 63–73.

    CAS  Google Scholar 

  15. Formhals, A. (1934). Process and apparatus for preparing artificial threads [Internet] USA; US 1975504 [cited November 2, 2018]. Available from: https://patentimages.storage.googleapis.com/7c/80/a3/67e4165167ebc1/US1975504.pdf

  16. Reneker, D. H. (1999). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7(3), 216–223.

    Article  Google Scholar 

  17. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishna, S. (2003, November 1). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology [Internet] [cited March 25, 2019] 63(15), 2223–2253. Available from: https://www.sciencedirect.com/science/article/pii/S0266353803001787

  18. Bhattarai, D. P., Aguilar, L. E., Park, C. H., & Kim, C. S. (2018). A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering. Membranes (Basel), 8(62), 1–24.

    Google Scholar 

  19. Sun, Z., Zussman, E., Yarin, A. L., Wendorff, J. H., & Greiner, A. (2003, November 17). Compound core–shell polymer nanofibers by co-electrospinning. Advanced Materials [Internet] [cited November 9, 2018] 15(22), 1929–1932. Available from: https://doi.org/10.1002/adma.200305136

  20. Han, D., & Steckl, A. J. (2019). Coaxial electrospinning formation of complex polymer fibers and their applications. ChemPlusChem, 84, 1453–1497. Review.

    Article  CAS  Google Scholar 

  21. Wen, X., & Tresco, P. A. (2006). Fabrication and characterization of permeable degradable poly(dl-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Biomaterials, 27(20), 3800–3809.

    Article  CAS  Google Scholar 

  22. Dror, Y., Salalha, W., Avrahami, R., Zussman, E., Yarin, A. L., Dersch, R., et al. (2007). One-step production of polymeric microtubes by co-electrospinning. Small (Weinheim an der Bergstrasse, Germany), 3(6), 1064–1073.

    Article  CAS  Google Scholar 

  23. Martins, A., Reis, R. L., & Neves, N. M. (2012). Critical aspects of electrospun meshes for biomedical applications. In: N. M. Neves (Ed.), Electrospinning for advanced biomedical applications and therapies, 1st ed. Smithers Rapra Technology (pp. 69–87).

    Google Scholar 

  24. Cheng, J., Jun, Y., Qin, J., & Lee, S.-H. (2017, January). Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterial (Review) [Internet] [cited January 17, 2019] 114, 121–143. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961216305890

  25. Long, Y.-Z., Yan, X., Wang, X.-X., Zhang, J., Yu, M. (2019). Electrospinning: the setup and procedure. In: B. Ding, X. Wang, & J. Yu (Eds.), Electrospinning: nanofabrication and applications [Internet] (1st ed., pp. 21–52) Elsevier Inc. Available from: http://www.sciencedirect.com/science/article/pii/B9780323512701000029

  26. Martins, A., Reis, R. L., & Neves, N. M. (2008). Electrospinning: Processing technique for tissue engineering scaffolding. International Materials Reviews, 53(5), 257–274.

    Article  CAS  Google Scholar 

  27. Process, E., Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35, 151–160.

    Article  Google Scholar 

  28. Greiner, A., & Wendorff, J. H. (2007). Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46, 5670–5703. Review.

    Article  CAS  Google Scholar 

  29. Reneker, D. H., & Chun, I. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7(3), 216–223.

    Article  CAS  Google Scholar 

  30. Morad, M. R., Rajabi, A., Razavi, M., & Pejman Sereshkeh, S. R. (2016). A very stable high throughput Taylor Cone-jet in electrohydrodynamics. Scientific Reports [Internet] 6, 1–10. Available from: https://doi.org/10.1038/srep38509

  31. Taylor, G. (1964). Disintegration of water drops in an electric field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 280(1382), 383–397.

    Google Scholar 

  32. Taylor, G. (1969). A PRSL. Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 313(1515), 453–475

    Google Scholar 

  33. Moghe, A. K., & Gupta, B. S. (2008). Co-axial electrospinning for nanofiber structures: Preparation and applications. Polymer Reviews, 48(2), 353–377.

    Article  CAS  Google Scholar 

  34. Hang, Y., Zhang, Y., Jin, Y., Shao, H., & Hu, X. (2012). Preparation of regenerated silk fibroin/silk sericin fibers by coaxial electrospinning. International Journal of Biological Macromolecules [Internet] 51(5), 980–986. Available from: https://doi.org/10.1016/j.ijbiomac.2012.08.010

  35. Huang, Z. M., He, C. L., Yang, A., Zhang, Y., Han, X. J., Yin, J., et al. (2006). Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 77(1), 169–179.

    Article  CAS  Google Scholar 

  36. Qin, X. (2017). Coaxial electrospinning of nanofibers. In M. Afshari (Ed.), Electrospun nanofibers (1st ed., pp. 41–71). Elsevier Ltd.

    Chapter  Google Scholar 

  37. Bazilevsky, A. V., Yarin, A. L., & Megaridis, C. M. (2007). Co-electrospinning of core-shell fibers using a single-nozzle technique. Langmuir, 23(5), 2311–2314.

    Article  CAS  Google Scholar 

  38. Haider, A., Haider, S., & Kang, I. (2015). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry [Internet] 11, 1165–1188. Available from: https://doi.org/10.1016/j.arabjc.2015.11.015

  39. Bogntizki, M., Frese, T., Steinhart, M., Greiner, A., Wendorff, J. H., Schaper, A., et al. (2001). Preparation of fibers with nanoscaled morphologies—ES of polymer blends. Polymer Engineering & Science, 41(6), 982–989.

    Article  Google Scholar 

  40. Bakar, S. S. S., Fong, K. C., Eleyas, A., & Nazeri, M. F. M. (2018). Effect of voltage and flow rate electrospinning parameters on polyacrylonitrile electrospun fibers. IOP Conference Series: Materials Science and Engineering, 318(1), 2–8.

    Google Scholar 

  41. Theron, S. A., Zussman, E., & Yarin, A. L. (2004). Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer (Guildf) [Internet] [cited November 9, 2018] 45, 2017–2030. Available from: http://www.bandj.com/Home.html.

  42. Rafiei, S., Maghsoodloo, S., Noroozi, B., Mottaghitalab, V., & Haghi, A. K. (2013) Mathematical modeling in electrospinning process of nanofibers: A detailed review. Cellulose Chemistry and Technology [Internet] [cited November 9, 2018] 47(6), 323–338. Available from: http://www.cellulosechemtechnol.ro/pdf/CCT5-6(2013)/p.323-338.pdf

  43. Ulubayram, K., Calamak, S., Shahbazi, R., & Eroglu, I. (2015). Nanofibers based antibacterial drug design, delivery and applications. Current Pharmaceutical Design, 21(15), 1930–1943.

    Article  CAS  Google Scholar 

  44. Cai, X., Zhu, P., Lu, X., Liu, Y., & Lei, T. (2017). Electrospinning of very long and highly aligned fibers. Journal of Materials Science, 52(24), 14004–14010.

    Article  CAS  Google Scholar 

  45. Katta, P., Alessandro, M., Ramsier, R. D., & Chase, G. G. (2004). Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Letters, 4(11), 2215–2218.

    Article  CAS  Google Scholar 

  46. Li, D., Wang, Y., Xia, Y., & Uni, V. (2003). Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Letters, 3(8), 1167–1171.

    Article  CAS  Google Scholar 

  47. Sundaray, B., Subramanian, V., Natarajan, T. S., Xiang, R. Z., Chang, C. C., & Fann, W. S. (2004). Electrospinning of continuous aligned polymer fibers. Applied Physics Letters, 84(7), 1222–1224.

    Article  CAS  Google Scholar 

  48. Grigoryev, N. A., & Levon, K. (2018). Novel method of electrospinning; rotating dual electrode collector design. Journal of Microelectromechanical Systems, 27(2), 312–320.

    Article  CAS  Google Scholar 

  49. Zander, N. E. (2013). Hierarchically structured electrospun fibers. Polymers (Basel), 5(1), 19–44.

    Article  CAS  Google Scholar 

  50. Yarin, A. L., Koombhongse, S., & Reneker, D. H. (2001, March 23). Bending instability in electrospinning of nanofibers. Journal of Applied Physics [Internet] [cited November 9, 2018] 89(5), 3018–3026. Available from: http://aip.scitation.org/doi/10.1063/1.1333035

  51. Deitzel, J. M., Kleinmeyer, J., Harris, D., & Beck Tan, N. C. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer (Guildf), 42(1), 261–272.

    Article  CAS  Google Scholar 

  52. Tarus, B., Fadel, N., Al-oufy, A., El-messiry, M. (2016). Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly(vinyl chloride) nanofiber mats. Alexandria Engineering Journal [Internet] 55(3), 2975–2984. Available from: https://doi.org/10.1016/j.aej.2016.04.025

  53. Koski, A., Yim, K., & Shivkumar, S. (2004). Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 58, 493–497.

    Article  CAS  Google Scholar 

  54. Kim, S. J., Lee, C. K., & Kim, S. I. (2005). Effect of ionic salts on the processing of poly(2-acrylamido-2-methyl-1-propane sulfonic acid) nanofibers. Journal of Applied Polymer Science, 96(4), 1388–1393.

    Article  CAS  Google Scholar 

  55. Pelipenko, J., Kristl, J., Janković, B., Baumgartner, S., & Kocbek, P. (2013). The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. International Journal of Pharmaceutics, 456(1), 125–134.

    Article  CAS  Google Scholar 

  56. Huan, S., Liu, G., Han, G., Cheng, W., Fu, Z., Wu, Q., et al. (2015). Effect of experimental parameters on morphological, mechanical and hydrophobic properties of electrospun polystyrene fibers. Materials (Basel), 8(5), 2718–2734.

    Article  CAS  Google Scholar 

  57. Wang, C., Wang, J., Zeng, L., Qiao, Z., Liu, X., & Liu, H. (2019). Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules, 24(834), 1–33. Review.

    Google Scholar 

  58. Fong, H., Chun, I., Reneker, D. H. (1999). Beaded nanofibers formed during electrospinning. Polymer (Guildf) [Internet] 40(16), 4585–4592. Available from: http://www.sciencedirect.com/science/article/pii/S0032386199000683

  59. Koombhongse, S., Liu, W., Reneker, D. H. (2001). Flat polymer ribbons and other shapes by electrospinning. Journal of Polymer Science Part B: Polymer Physics [Internet] 39(1), 2363–2377. Available from: http://onlinelibrary.wiley.com/doi/10.1002/polb.10070/full

  60. Zhang, J. F., Yang, D. Z., Xu, F., Zhang, Z. P., Yin, R. X., & Nie, J. (2009). Electrospun core-shell structure nanofibers from homogeneous solution of poly(ethylene oxide)/chitosan. Macromolecules, 42(14), 5278–5284.

    Article  CAS  Google Scholar 

  61. Lee, G. H., Song, J. C., & Yoon, K. B. (2010). Controlled wall thickness and porosity of polymeric hollow nanofibers by coaxial electrospinning. Macromolecular Research, 18(6), 571–576.

    Article  CAS  Google Scholar 

  62. McCann, J. T., Li, D., & Xia, Y. (2005). Electrospinning of nanofibers with core-sheath, hollow, or porous structures. Journal of Materials Chemistry, 15(7), 735–738.

    Article  CAS  Google Scholar 

  63. Yu, D. G., Li, X. Y., Wang, X., Yang, J. H., Bligh, S. W. A., & Williams, G. R. (2015). Nanofibers fabricated using triaxial electrospinning as zero order drug delivery systems. ACS Applied Materials & Interfaces, 7(33), 18891–18897.

    Article  CAS  Google Scholar 

  64. Samanta, A., Nandan, B., Srivastava, R. K. (2016). Morphology of electrospun fibers derived from high internal phase emulsions high internal fiber. Journal of Colloid and Interface Science [Internet] 471, 29–36. Available from: https://doi.org/10.1016/j.jcis.2016.03.012

  65. Yarin, A. L. (2011). Coaxial electrospinning and emulsion electrospinning of core—shell fibers. Polymers for Advanced Technologies, 22, 310–317.

    Article  CAS  Google Scholar 

  66. Li, D., McCann, J. T., & Xia, Y. (2005). Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces. Small (Weinheim an der Bergstrasse, Germany), 1(1), 83–86.

    Article  CAS  Google Scholar 

  67. Wang, T., Wei, J., Shi, H., Zhou, M., Zhang, Y., Chen, Q., et al. (2017). Preparation of electrospun Ag/TiO2 nanotubes with enhanced photocatalytic activity based on water/oil phase separation. Physica E: Low-dimensional Systems and Nanostructures [Internet] 86, 103–110. Available from: https://doi.org/10.1016/j.physe.2016.10.016

  68. Zhao, Y., Cao, X., & Jiang, L. (2007). Bio-mimic multichannel microtubes by a facile method. Journal of the American Chemical Society, 129(4), 764–765.

    Article  CAS  Google Scholar 

  69. Katsogiannis, K. A. G., Vladisavljević, G. T., & Georgiadou, S. (2016). Porous electrospun polycaprolactone fibers: Effect of process parameters. Journal of Polymer Science Part B: Polymer Physics, 54(18), 1878–1888.

    Article  CAS  Google Scholar 

  70. Tran, C., & Kalra, V. (2013). Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors. Journal of Power Sources [Internet] 235, 289–296. Available from: https://doi.org/10.1016/j.jpowsour.2013.01.080

  71. Zuo, W., Zhu, M., Yang, W., Yu, H., Chen, Y., & Zhang, Y. (2005). Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polymer Engineering & Science, 45(5), 704–709.

    Article  CAS  Google Scholar 

  72. Tian, X., Bai, H., Zheng, Y., & Jiang, L. (2011). Bio-inspired heterostructured bead-on-string fibers that respond to environmental wetting. Advanced Functional Materials, 21(8), 1398–1402.

    Article  CAS  Google Scholar 

  73. Liu, S., Zhang, F., Zheng, G., Dai, K., Liu, C., Shen, C., et al. (2016). Direct microscopic observation of shish-kebab structure in high-temperature electrospun iPP fibers. Materials Letters [Internet] 172, 149–52. Available from: https://doi.org/10.1016/j.matlet.2016.02.111

  74. Murase, H., Jinnai, H., Toriyama, T., & Hashimoto, T. (2019). Cascade self-organization of Shish Kebabs in fibers spun from polymer solutions: crystalline fibrils bridging neighboring Kebabs discovered by transmission electron microtomography. Macromolecules, 52(2), 575–591.

    Article  CAS  Google Scholar 

  75. Bhaskar, S., Roh, K. H., Jiang, X., Baker, G. L., & Lahann, J. (2008). Spatioselective modification of bicompartmental polymer particles and fibers via huisgen 1,3 -dipolar cycloaddition. Macromolecular Rapid Communications, 29(20), 1655–1660.

    Article  CAS  Google Scholar 

  76. Yu, D. G., Li, J.-J., Zhang, M., & Williams, G. R. (2017). High-quality janus nanofibers prepared using three-fluid electrospinning. ChemComm [Internet] 53(33), 10,715–10,722. Available from: http://xlink.rsc.org/?DOI=C5TC02043C

  77. Wu, S., Duan, B., Liu, P., Zhang, C., Qin, X., Butcher, J. T., et al. (2016). Fabrication of aligned nanofiber polymer yarn networks for anisotropic soft tissue scaffolds. ACS Applied Materials & Interfaces, 8(26), 16950–16960.

    Article  CAS  Google Scholar 

  78. Laranjeira, M., Domingues, R. M. A., Costa-almeida, R., & Reis, R. L. (2017). 3D mimicry of native-tissue-fiber architecture guides tendon-derived cells and adipose stem cells into artificial tendon constructs. Small (Weinheim an der Bergstrasse, Germany), 13(31), 1–13.

    Article  CAS  Google Scholar 

  79. Rezvani, Z., Venugopal, J. R., Urbanska, A. M., Mills, D. K., Ramakrishna, S., & Mozafari, M. (2016). A bird’s eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: Current state-of-the-art, emerging directions and future trends. Nanomedicine Nanotechnology, Biology and Medicine [Internet] 12(7), 2181–2200. Available from: https://doi.org/10.1016/j.nano.2016.05.014

  80. Martins, A., Alves da Silva, M. L., Faria, S., Marques, A. P., Reis, R. L., & Neves, N. M. (2011). The influence of patterned nanofiber meshes on human mesenchymal stem cell osteogenesis. Macromolecular Bioscience, 11(7), 978–987.

    Google Scholar 

  81. Li, D., & Xia, Y. (2004). Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Letters, 4(5), 933–938.

    Article  CAS  Google Scholar 

  82. Bingbing, W., Bing, L., Jie, X., & Li, C. Y. (2008). Hierarchically ordered polymer nanofibers via electrospinning and controlled polymer crystallization. Macromolecules, 41(24), 9516–9521.

    Article  CAS  Google Scholar 

  83. Aghaei-Ghareh-Bolagh, B., Mukherjee, S., Lockley, K. M., Mithieux, S. M., Wang, Z., Emmerson, S., et al. (2020). A novel tropoelastin-based resorbable surgical mesh for pelvic organ prolapse repair. Materials Today Bio [Internet] 8(October), 100081. Available from: https://doi.org/10.1016/j.mtbio.2020.100081

  84. Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368–373.

    Article  CAS  Google Scholar 

  85. Xiong, B., Ren, K., Shu, Y., Chen, Y., Shen, B., & Wu, H. (2014). Recent developments in microfluidics for cell studies. Advanced Materials, 26(31), 5525–5532.

    Article  CAS  Google Scholar 

  86. Chan, H. N., Chen, Y., Shu, Y., Chen, Y., Tian, Q., & Wu, H. (2015). Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips. Microfluid Nanofluidics., 19(1), 9–18.

    Article  CAS  Google Scholar 

  87. Convery, N., & Gadegaard, N. (2019). 30 years of microfluidics. Micro Nano Engineering, 2, 76–91. Review.

    Article  Google Scholar 

  88. Wang, X., Liu, J., Wang, P., DeMello, A., Feng, L., Zhu, X., et al. (2018). Synthesis of biomaterials utilizing microfluidic technology. Genes (Basel), 9(283), 1–28.

    Google Scholar 

  89. Amin, A. M., Thakur, R., Madren, S., Chuang, H. S., Thottethodi, M., Vijaykumar, T. N., et al. (2013). Software-programmable continuous-flow multi-purpose lab-on-a-chip. Microfluid Nanofluidics, 15(5), 647–659.

    Article  Google Scholar 

  90. Gonidec, M., & Puigmartí-Luis, J. (2018). Continuous-versus segmented-flow microfluidic synthesis in materials science. Crystals, 9(1), 1–12.

    Article  CAS  Google Scholar 

  91. Jiang, L., & Korivi, N. S. (2013). Microfluidics: Technologies and applications. In: M. Feldman (Ed.), Nanolithography: The art of fabricating nanoelectronic and nanophotonic devices and systems [Internet] (1st ed, pp. 424–443). Woodhead Publishing Limited. Available from: https://doi.org/10.1533/9780857098757.424

  92. Andersson, H., & Van Den Berg, A. (2004). Microfabrication and microfluidics for tissue engineering: State of the art and future opportunities. Lab on a Chip, 4(2), 98–103.

    Article  CAS  Google Scholar 

  93. Ren, K., Zhou, J., & Wu, H. (2013). Materials for microfluidic chip fabrication. Accounts of Chemical Research, 46(11), 2396–2406.

    Article  CAS  Google Scholar 

  94. Iliescu, C., Taylor, H., Avram, M., Miao, J., & Franssila, S. (2012). A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics, 6(1), 165051–1650516.

    Article  CAS  Google Scholar 

  95. McDonald, J. C., & Whitesides, G. M. (2002). Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts of Chemical Research, 35(7), 491–499.

    Article  CAS  Google Scholar 

  96. Pan, T., Fiorini, G. S., Chiu, D. T., & Woolley, A. T. (2007). In-channel atom-transfer radical polymerization of thermoset polyester microfluidic devices for bioanalytical applications. Electrophoresis, 28(16), 2904–2911.

    Article  CAS  Google Scholar 

  97. Tsao, C. W., & DeVoe, D. L. (2009). Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluidics., 6(1), 1–16.

    Article  CAS  Google Scholar 

  98. Martinez, A. W., Phillips, S. T., & Whitesides, G. M. (2010). Diagnostics for the developing world microfluidic. Analytical Chemistry, 82(1), 3–10.

    Article  CAS  Google Scholar 

  99. Huang, G. Y., Zhou, L. H., Zhang, Q. C., Chen, Y. M., Sun, W., Xu. F., et al. (2011). Microfluidic hydrogels for tissue engineering. Biofabrication, 3(1).

    Google Scholar 

  100. Jun, Y., Kang, E., Chae, S., & Lee, S. H. (2014). Microfluidic spinning of micro- and nano-scale fibers for tissue engineering. Lab on a Chip, 14(13), 2145–2160.

    Article  CAS  Google Scholar 

  101. Fidalgo, L. M., & Maerkl, S. J. (2011). A software-programmable microfluidic device for automated biology. Lab on a Chip, 11(9), 1612–1619.

    Article  CAS  Google Scholar 

  102. Dam, H., Gyun, S., Min, G., Park, M., Ku, B., & Sang, H. (2021). Theoretical and experimental investigation of the wet-spinning process for mechanically strong carbon nanotube fibers. Chemical Engineering Journal [Internet] 412(September 2020), 128650. Available from: https://doi.org/10.1016/j.cej.2021.128650

  103. Beebe, D. J., Mensing, G. A., & Walker, G. M. (2002). Physics and applications of microfluidics in biology. Annual Review of Biomedical Engineering, 4(1), 261–286.

    Article  CAS  Google Scholar 

  104. Cimrák, I., Gusenbauer, M., & Schrefl, T. (2012). Modelling and simulation of processes in microfluidic devices for biomedical applications. Computers & Mathematics with Applications [Internet] 64(3), 278–288. Available from: https://doi.org/10.1016/j.camwa.2012.01.062

  105. Zarrin, F., & Dovichi, N. J. (1985). Sub-Picoliter detection with the sheath flow cuvette. Analytical Chemistry, 57(13), 2690–2692.

    Article  CAS  Google Scholar 

  106. Kang, E., Choi, Y. Y., Chae, S. K., Moon, J. H., Chang, J. Y., & Lee, S. H. (2012). Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds. Advanced Materials, 24(31), 4271–4277.

    Article  CAS  Google Scholar 

  107. Du, X., Li, Q., Wu, G., & Chen, S. (2019). Multifunctional micro/nanoscale fibers based on microfluidic spinning technology. Advanced Materials, 1903733, 1–38.

    Google Scholar 

  108. Marimuthu, M., Kim, S., & An, J. (2010). Amphiphilic triblock copolymer and a microfluidic device for porous microfiber fabrication. Soft Matter, 6(10), 2200–2207.

    Article  CAS  Google Scholar 

  109. Yu, Y., Wei, W., Wang, Y., Xu, C., Guo, Y., & Qin, J. (2016). Simple spinning of heterogeneous hollow microfibers on chip. Advanced Materials, 28(31), 6649–6655.

    Article  CAS  Google Scholar 

  110. Choi, C. H., Yi, H., Hwang, S., Weitz, D. A., & Lee, C. S. (2011). Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow. Lab on a Chip, 11(8), 1477–1483.

    Article  CAS  Google Scholar 

  111. Thangawng, A. L., Howell, P. B., Spillmann, C. M., Naciri, J., & Ligler, F. S. (2011). UV polymerization of hydrodynamically shaped fibers. Lab on a Chip, 11(6), 1157–1160.

    Article  CAS  Google Scholar 

  112. Cho, S., Shim, T. S., & Yang, S. M. (2012). High-throughput optofluidic platforms for mosaicked microfibers toward multiplex analysis of biomolecules. Lab on a Chip, 12(19), 3676–3679.

    Article  CAS  Google Scholar 

  113. Thangawng, A. L., Howell, P. B., Richards, J. J., Erickson, J. S., & Ligler, F. S. (2009). A simple sheath-flow microfluidic device for micro/nanomanufacturing: Fabrication of hydrodynamically shaped polymer fibers. Lab on a Chip, 9(21), 3126–3130.

    Article  CAS  Google Scholar 

  114. Park, D. Y., Mun, C. H., Kang, E., No, D. Y., Ju, J., & Lee, S. H. (2014). One-stop microfiber spinning and fabrication of a fibrous cell-encapsulated scaffold on a single microfluidic platform. Biofabrication, 6(2).

    Google Scholar 

  115. Jung, J. H., Choi, C. H., Chung, S., Chung, Y. M., & Lee, C. S. (2009). Microfluidic synthesis of a cell adhesive Janus polyurethane microfiber. Lab on a Chip, 9(17), 2596–2602.

    Article  CAS  Google Scholar 

  116. Kang, E., Jeong, G. S., Choi, Y. Y., Lee, K. H., Khademhosseini, A., Lee, S. H. (2011). Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nature Materials [Internet] 10(11), 877–883. Available from: https://doi.org/10.1038/nmat3108

  117. Hwang, C. M., Khademhosseini, A., Park, Y., Sun, K., & Lee, S. H. (2008). Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering. Langmuir, 24(13), 6845–6851.

    Article  CAS  Google Scholar 

  118. Kanik, M., Marcali, M., Yunusa, M., Elbuken, C., & Bayindir, M. (2016). Continuous triboelectric power harvesting and biochemical sensing inside poly(vinylidenefluoride) hollow fibers using microfluidic droplet generation. Advanced Materials Technologies, 1(9).

    Google Scholar 

  119. Leng, L., McAllister, A., Zhang, B., Ranu, A., Radisic, M., & Guenther, A. (2012). Osaic hydrogels: One-step formation of multiscale soft materials. Advanced Materials, 24, 3650–3658.

    Article  CAS  Google Scholar 

  120. Cheng, Y., Zheng, F., Lu, J., Shang, L., Xie, Z., Zhao, Y., et al. (2014). Bioinspired multicompartmental microfibers from microfluidics. Advanced Materials, 26(30), 5184–5190.

    Article  CAS  Google Scholar 

  121. Sackmann, E. K., Fulton, A. L., & Beebe, D. J. (2014). The present and future role of microfluidics in biomedical research. Nature [Internet] 507(7491), 181–189. Available from: https://doi.org/10.1038/nature13118

  122. Bhatia, S. N., & Ingber, D. E. (2014). Microfluidic organs-on-chips. Nature Biotechnology [Internet] 32(8), 760–772. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25093883

  123. Yeon, J. H., Na, D., Choi, K., Ryu, S. W., Choi, C., & Park, J. K. (2012). Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures. Biomedical Microdevices, 14(6), 1141–1148.

    Article  CAS  Google Scholar 

  124. Esch, M. B., Sung, J. H., Yang, J., Yu, C., Yu, J., March, J. C., et al. (2012). On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic “body-on-a-chip” devices. Biomedical Microdevices, 14(5), 895–906.

    Article  CAS  Google Scholar 

  125. Onoe, H., Okitsu, T., Itou, A., Kato-Negishi, M., Gojo, R., Kiriya, D., et al. (2013). Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nature Materials [Internet] 12(6), 584–590. Available from: https://doi.org/10.1038/nmat3606

  126. Shamloo, A., Ma, N., Poo, M. M., Sohn, L. L., & Heilshorn, S. C. (2008). Endothelial cell polarization and chemotaxis in a microfluidic device. Lab on a Chip, 8(8), 1292–1299.

    Article  CAS  Google Scholar 

  127. Irimia, D., Geba, D. A., & Toner, M. (2006). Universal microfluidic gradient generator. Analytical Chemistry, 78(10), 3472–3477.

    Article  CAS  Google Scholar 

  128. Lee, S. J., & Lee, S. Y. (2004). Micro total analysis system (μ-TAS) in biotechnology. Applied Microbiology and Biotechnology, 64(3), 289–299.

    Article  CAS  Google Scholar 

  129. Lee, K. H., Shin, S. J., Park, Y., & Lee S.-H. (2009, June). Synthesis of cell-laden alginate hollow fibers using microfluidic chips and microvascularized tissue-engineering applications. Small [Internet] [cited 2019 Nov 1] 5(11), 1264–1268. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19296560

  130. Francois, E., Dorcemus, D., & Nukavarapu, S. (2015). Biomaterials and scaffolds for musculoskeletal tissue engineering. Regenerative Engineering of Musculoskeletal Tissues Interfaces, 14(3), 3–23.

    Article  CAS  Google Scholar 

  131. Anderson, J. M. (2012). Inflammation, wound healing, and the foreign-body response. In: B. D. Ratner, A. S. Hoffman, F. J. Schoen, & J. E. Lemons (Eds.), Biomaterials science: An introduction to materials in medicine [Internet] (3rd ed., pp. 503–512). Elsevier. Available from: https://doi.org/10.1016/B978-0-08-087780-8.00044-9

  132. Furth, M. E., & Atala, A. (2014). Tissue engineering: Future perspectives. In: R. Lanza, R. S. Langer, & J. P. Vacanti (Eds.), Principles of tissue engineering [Internet] (4th ed., pp. 83–123). Elsevier. Available from: https://doi.org/10.1016/B978-0-12-398358-9.00006-9

  133. Gomes, M. E., & Reis, R. L. (2004). Tissue engineering: Key elements and some trends. Macromolecular Bioscience, 4, 737–742.

    Article  CAS  Google Scholar 

  134. Nemati, S. Kim, S., Shin, Y. M., & Shin, H. (2019). Current progress in application of polymeric nanofibers to tissue engineering. Nano Convergence [Internet] 6(36), 1–16. Available from: https://doi.org/10.1186/s40580-019-0209-y

  135. Jun, I., Han, H., Edwards, J. R., & Jeon, H. (2018). Electrospun fibrous scaffolds for tissue engineering: Viewpoints on architecture and fabrication. International Journal of Molecular Sciences, 19(745), 1–14. Review.

    Google Scholar 

  136. Chen, M., Patra, P. K., Lovett, M. L., Kaplan, D. L., & Bhowmick, S. (2009). Role of electrospun fibre diameter and corresponding specific surface area (SSA) on cell attachment. Journal of Tissue Engineering and Regenerative Medicine, 3, 269–279.

    Article  CAS  Google Scholar 

  137. Han, D., Boyce, S. T., & Steckl, A. J. (2008). Versatile core-sheath biofibers using coaxial electrospinning. Material research society [Internet] (Boston) [cited November 11, 2018]. Available from: http://www.nanolab.uc.edu/Publications/PDFfiles/366.pdf

  138. Wang, G., Jia, L., Han, F., Wang, J., Yu, L., Yu, Y., et al. (2019). Microfluidics-based fabrication of cell-laden hydrogel microfibers for potential applications in tissue engineering. Molecules, 24(8), 1–11.

    Google Scholar 

  139. Onoe, H., & Takeuchi, S. (2015). Cell-laden microfibers for bottom-up tissue engineering. Drug Discovery Today, 20(2), 236–246. Review.

    Article  CAS  Google Scholar 

  140. Morimoto, Y., Hsiao, A. Y., & Takeuchi, S. (2015). Point-, line-, and plane-shaped cellular constructs for 3D tissue assembly. Advanced Drug Delivery Reviews [Internet] [cited November 1, 2019] 95, 29–39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26387835

  141. Lee, G. H., Lee, J. S., Wang, X., & Lee, S. H. (2016, January 7). Bottom-up engineering of well-defined 3d microtissues using microplatforms and biomedical applications. Advanced Healthcare Materials [Internet] [cited November 1, 2019] 5(1), 56–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25880830

  142. Cheng, Y., Zheng, F., Lu, J., Shang, L., Xie, Z., Zhao, Y., et al. (2014, August 13). Bioinspired multicompartmental microfibers from microfluidics. Advanced Materials, 26(30), 5184–5190

    Google Scholar 

  143. Araujo, J. V., Martins, A., Leonor, I. B., Pinho, E. D., Reis, R. L., & Neves, N. M. (2008). Surface controlled biomimetic coating of polycaprolactone nanofiber meshes to be used as bone extracellular matrix analogues. Journal of Biomaterials Science, Polymer Edition, 19(10), 1261–1278.

    Article  CAS  Google Scholar 

  144. Martins, A., Pinho, E. D., Correlo, V. M., Faria, S., Marques, A. P., Reis, R. L., et al. (2010). Biodegradable nanofibers-reinforced microfibrous composite scaffolds for bone tissue engineering. Tissue Engineering Part A, 16(12), 3599–3609.

    Article  CAS  Google Scholar 

  145. Kim, D., Kim, K., & Shin, H. (2015). Effects of Immobilized BMP—2 and nano fiber morphology on in vitro osteogenic differentiation of hMSCs and in vivo collagen assembly of regenerated bone. Applied Materials & Interfaces, 7, 8798–8808.

    Article  CAS  Google Scholar 

  146. Silva, M. L. A., Martins, A., Costa, P., Faria, S., Gomes, M., Reis, R. L., et al. (2010). Cartilage tissue engineering using electrospun PCL nanofiber meshes and MSCs. Biomacromolecules, 11, 3228–3236.

    Article  CAS  Google Scholar 

  147. Casanova, M. R., Alves da Silva, M., Costa-Pinto, A. R., Reis, R. L., Martins, A., & Neves, N. M. (2019). Chondrogenesis-inductive nanofibrous substrate using both biological fluids and mesenchymal stem cells from an autologous source. Materials Science and Engineering C [Internet] 98(January), 1169–1178. Available from: https://doi.org/10.1016/j.msec.2019.01.069

  148. Shafiee, A., Soleimani, M., Chamheidari, G. A., Seyedjafari, E., Dodel M, Atashi A, et al. (2011). Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells. Journal of Biomedical Materials Research Part A 467–478.

    Google Scholar 

  149. Li, W., Chiang, H., Kuo, T., Lee, H., Jiang, C., & Tuan, R. S. (2009). Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: A pilot study. Journal of Tissue Engineering and Regenerative Medicine, 3, 1–10.

    Article  CAS  Google Scholar 

  150. McCullen, S. D., Autefage, H., Callanan, A., Gentleman, E., & Stevens, M. M. (2012). Anisotropic fibrous scaffolds for articular cartilage regeneration. Tissue Engineering Part A, 18(19–20), 2073–2083.

    Article  CAS  Google Scholar 

  151. Groeber, F., Holeiter, M., Hampel, M., Hinderer, S., & Schenke-Layland, K. (2012). Skin tissue engineering-in vivo and in vitro applications. Clinics in Plastic Surgery [Internet] 39(1), 33–58. Available from: https://doi.org/10.1016/j.addr.2011.01.005

  152. Dias, J. R., Granja, P. L., & Bártolo, P. J. (2016). Advances in electrospun skin substitutes. Progress in Materials Science [Internet] 84, 314–334. Available from: https://doi.org/10.1016/j.pmatsci.2016.09.006

  153. Sundaramurthi, D., Vasanthan, K. S., Kuppan, P., Krishnan, U. M., & Sethuraman, S. (2012). Electrospun nanostructured chitosan-poly(vinyl alcohol) scaffolds: A biomimetic extracellular matrix as dermal substitute. Biomedical Materials 7(4).

    Google Scholar 

  154. Xu, S. C., Qin, C. C., Yu, M., Dong, R. H., Yan, X., Zhao, H., et al. (2015). A battery-operated portable handheld electrospinning apparatus. Nanoscale, 7(29), 12351–12355.

    Article  CAS  Google Scholar 

  155. Aviss, K. J., Gough, J. E., & Downes, S. (2010). Aligned electrospun polymer fibres for skeletal muscle regeneration. European Cells and Materials, 19, 193–204.

    Article  CAS  Google Scholar 

  156. Hasan, A., Memic, A., Annabi, N., Hossain, M., Paul, A., Dokmeci, M. R., et al. (2014). Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomaterialia [Internet] 10(1), 11–25. Available from: https://doi.org/10.1016/j.actbio.2013.08.022

  157. Zhou, F., Jia, X., Yang, Y., Yang, Q., Gao, C., Hu, S., et al. (2016). Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration. Acta Biomaterialia [Internet] 43, 303–313. Available from: https://doi.org/10.1016/j.actbio.2016.07.048

  158. Pektok E, Nottelet B, Tille J, Gurny R, Kalangos A, Moeller M, et al. Poly (e-Caprolactone ) Vascular Grafts in the Rat Systemic. J Am Heart Assoc. 2008;2563–70.

    Google Scholar 

  159. Felizardo, T., Amorim, S., Mithieux, S. M., Pires, R. A., Reis, R. L., Martins, A., et al. (2020) Tubular fibrous scaffolds functionalized with tropoelastin as a small-diameter vascular graft.

    Google Scholar 

  160. Lim, G. J., Lee, S. J., & Atala, A. (2005). Cell-based drug delivery. In: A. Atala, R. S. Langer, T. Mikos, & R. M. Nerem (Eds.), Principles of regenerative medicine [Internet] (3rd ed., pp. 954–966). Elsevier Inc. Available from: https://doi.org/10.1016/B978-0-12-369410-2.50057-7

  161. Xie, J., MacEwan, M. R., Schwartz, A. G., & Xia, Y. (2010). Electrospun nanofibers for neural tissue engineering. Nanoscale, 2(1), 35–44.

    Article  CAS  Google Scholar 

  162. Mo, X., Sun, B., Wu, T., & El-Hamshary, H. (2017). Nanofiber composites in neural tissue engineering. In M. Ramalingam & S. Ramakrishna (Eds.), Nanofiber composites for biomedical applications (1st ed., pp. 395–410). Elsevier Inc.

    Chapter  Google Scholar 

  163. Dinis, T. M., Elia, R., Vidal, G., Dermigny, Q., Denoeud, C., Kaplan, D. L., et al. (2015). 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration. Journal of the Mechanical Behavior of Biomedical Materials [Internet] 41, 43–55. Available from: https://doi.org/10.1016/j.jmbbm.2014.09.029

  164. Dhivya, S., Vijaya, V., & Santhini, E. (2015). Wound dressings—a review. Biomedicine, 5(4), 24–28.

    Article  Google Scholar 

  165. Bhardwaj, N., & Kundu, S. C. (2010, May). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances (Review) [Internet] [cited 2 November 2018] 28(3), 325–347. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20100560

  166. Kenawy, E. R., Layman, J. M., Watkins, J. R., Bowlin, G. L., Matthews, J. A., Simpson, D. G., et al. (2003). Electrospinning of poly(ethylene-co-vinyl alcohol) fibers. Biomaterials, 24(6), 907–913.

    Article  CAS  Google Scholar 

  167. Min, B.-M., Lee, G., Kim, S. H., Nam, Y. S., Lee, T. S., & Park, W. H. (2004). Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, 25(7–8), 1289–1297.

    Article  CAS  Google Scholar 

  168. Rho, K. S., Jeong, L., Lee, G., Seo, B. M., Park, Y. J., Hong, S. D., et al. (2006). Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials, 27(8), 1452–1461.

    Article  CAS  Google Scholar 

  169. Khil, M. S., Cha, D. I., Kim, H. Y., Kim, I. S., & Bhattarai, N. (2003). Electrospun nanofibrous polyurethane membrane as wound dressing. Journal of Biomedical Materials Research—Part B Applied Biomaterials, 67(2), 675–679.

    Google Scholar 

  170. Ramakrishna, S., Fujihara, K., Teo, W E., Yong, T., Ma, Z., Ramaseshan, R. (2006). Electrospun nanofibers: Solving global issues. Materials Today (Review) [Internet] 9(3), 40–50. Available from: https://doi.org/10.1016/S1369-7021(06)71389-X

  171. Tiwari, G., Tiwari, R., Bannerjee, S., Bhati, L., Pandey, S., Pandey, P., et al. (2012). Drug delivery systems: An updated review. International Journal of Pharmaceutical Investigation, 2(1), 2.

    Article  CAS  Google Scholar 

  172. Torres-Martinez, E. J., Cornejo Bravo, J. M., Serrano Medina, A., Pérez González, G. L., & Villarreal Gómez, L. J. (2018). A summary of electrospun nanofibers as drug delivery system: Drugs loaded and biopolymers used as matrices. Current Drug Delivery, 15(10), 1360–1374.

    Article  CAS  Google Scholar 

  173. Tipduangta, P., Belton, P., Fábián, L., Wang, L. Y., Tang, H., Eddleston, M., et al. (2016). Electrospun polymer blend nanofibers for tunable drug delivery: The role of transformative phase separation on controlling the release rate. Molecular Pharmaceutics, 13(1), 25–39.

    Article  CAS  Google Scholar 

  174. Wang, Y., Qiao, W., Wang, B., Zhang, Y., Shao, P., & Yin, T. (2011). Electrospun composite nanofibers containing nanoparticles for the programmable release of dual drugs. Polymer Journal, 43(5), 478–483.

    Article  CAS  Google Scholar 

  175. Lu, Y., Huang, J., Yu, G., Cardenas, R., Wei, S., Wujcik, E. K., et al. (2016). Coaxial electrospun fibers: Applications in drug delivery and tissue engineering. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 8(5), 654–677.

    CAS  Google Scholar 

  176. Su, Y., Su, Q., Liu, W., Lim, M., Venugopal, J. R., Mo, X., et al. (2012). Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering. Acta Biomaterialia [Internet] 8(2), 763–771. Available from: https://doi.org/10.1016/j.actbio.2011.11.002

  177. Zhang, L., Chen, Q., Ma, Y., & Sun, J. (2020). Micro fluidic methods for fabrication and engineering of nanoparticle drug delivery systems. ACS Applied Bio Materials, 3(1), 107–120.

    Article  CAS  Google Scholar 

  178. Ahn, S. Y., Mun, C. H., & Lee, S. H. (2015). Microfluidic spinning of fibrous alginate carrier having highly enhanced drug loading capability and delayed release profile. RSC Advances, 5(20), 15172–15181.

    Article  CAS  Google Scholar 

  179. He, X. H., Wang, W., Deng, K., Xie, R., Ju, X. J., Liu, Z., et al. (2015). Microfluidic fabrication of chitosan microfibers with controllable internals from tubular to peapod-like structures. RSC Advances, 5(2), 928–936.

    Article  CAS  Google Scholar 

  180. Liu, Y., Wang, S., & Wang, Y. (2016). Patterned fibers embedded microfluidic chips based on PLA and PDMS for Ag nanoparticle safety testing. Polymers (Basel) 8(11).

    Google Scholar 

  181. Hu, T., Li, Q., Dong, H., Xiao, W., Li, L., & Cao, X. (2017). Patterning electrospun nanofibers via agarose hydrogel stamps to spatially coordinate cell orientation in microfluidic device. Small (Weinheim an der Bergstrasse, Germany), 13(3), 1–7.

    CAS  Google Scholar 

  182. Jin, S., Dai, M., Ye, B. C., & Nugen, S. R. (2013). Development of a capillary flow microfluidic Escherichia coli biosensor with on-chip reagent delivery using water-soluble nanofibers. Microsystem Technologies, 19(12), 2011–2015.

    Article  CAS  Google Scholar 

  183. Dai, M., Jin, S., & Nugen, S. R. (2012). Water-soluble electrospun nanofibers as a method for on-chip reagent storage. Biosensors, 2(4), 388–395.

    Article  CAS  Google Scholar 

  184. Zhao, L., Lu, Y. T., Li, F., Wu, K., Hou, S., Yu, J., et al. (2013). High-purity prostate circulating tumor cell isolation by a polymer nanofiber-embedded microchip for whole exome sequencing. Advanced Materials, 25(21), 2897–2902.

    Article  CAS  Google Scholar 

  185. Jo, E., Lim, M. C., Kim, H. N., Paik, H. J., Kim, Y. R., & Jeong, U. (2011). Microfluidic channels fabricated on mesoporous electrospun fiber mats: A facile route to microfluidic chips. Journal of Polymer Science Part B: Polymer Physics, 49(2), 89–95.

    Article  CAS  Google Scholar 

  186. Park, S. M., & Kim, D. S. (2015). Electrolyte-assisted electrospinning for a self-assembled, free-standing nanofiber membrane on a curved surface. Advanced Materials, 27(10), 1682–1687.

    Article  CAS  Google Scholar 

  187. Kwang, H. L., Gu, H. K., Su, J. S., Baek, J. Y., Dong, K. H., Park, Y., et al. (2009). Hydrophilic electrospun polyurethane nanofiber matrices for hMSC culture in a microfluidic cell chip. Journal of Biomedical Materials Research Part A, 90(2), 619–628.

    Google Scholar 

  188. Wallin, P., Zandén, C., Carlberg, B., Hellström Erkenstam, N., Liu, J., & Gold, J. (2012). A method to integrate patterned electrospun fibers with microfluidic systems to generate complex microenvironments for cell culture applications. Biomicrofluidics, 6(2).

    Google Scholar 

  189. Kim, D., & Herr, A. E. (2013). Protein immobilization techniques for microfluidic assays. Biomicrofluidics, 7(4), 1–47.

    Article  CAS  Google Scholar 

  190. Matlock-Colangelo, L., & Baeumner, A. J. (2014). Biologically inspired nanofibers for use in translational bioanalytical systems. Annual Review of Analytical Chemistry, 7(1), 23–42.

    Article  CAS  Google Scholar 

  191. Yang, D., Niu, X., Liu, Y., Wang, Y., Gu, X., Song, L., et al. (2008). Electrospun nanofibrous membranes: A novel solid substrate for microfluidic immunoassays for HIV. Advanced Materials, 20(24), 4770–4775.

    Article  CAS  Google Scholar 

  192. Matlock-Colangelo, L., Coon, B., Pitner, C. L., Frey, M. W., & Baeumner, A. J. (2016). Functionalized electrospun poly(vinyl alcohol) nanofibers for on-chip concentration of E. coli cells. Analytical and Bioanalytical Chemistry, 408(5), 1327–1334.

    Google Scholar 

  193. Zhuo Zhang, J., & Nagrath, S. (2013). Microfluidics and cancer: Are we there yet? Biomedical Microdevices, 15(4), 595–609.

    Article  CAS  Google Scholar 

  194. Lin, M., Chen, J. F., Lu, Y. T., Zhang, Y., Song, J., Hou, S., et al. (2014). Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells. Accounts of Chemical Research, 47(10), 2941–2950.

    Article  CAS  Google Scholar 

  195. Hou, S., Zhao, L., Shen, Q., Yu, J., Ng, C., Kong, X., et al. (2013). Polymer nanofiber-embedded microchips for detection, isolation, and molecular analysis of single circulating melanoma cells. Angewandte Chemie, 125(12), 3463–3467.

    Article  Google Scholar 

  196. Wang, S., Liu, K., Liu, J., Yu, Z. T.-F., Xu, X., & Zhao, L., et al. (2011). Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angewandte Chemie, 123(13):3140–3144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno M. Neves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vasconcelos, F., Reis, R.L., Martins, A., Neves, N.M. (2022). Biomedical Applications of Fibers Produced by Electrospinning, Microfluidic Spinning and Combinations of Both. In: Vaseashta, A., Bölgen, N. (eds) Electrospun Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-030-99958-2_10

Download citation

Publish with us

Policies and ethics