Skip to main content

Predicting COVID-19 Patient Shielding: A Comprehensive Study

  • Conference paper
  • First Online:
Book cover AI 2021: Advances in Artificial Intelligence (AI 2022)

Abstract

There are many ways machine learning and big data analytics are used in the fight against the COVID-19 pandemic, including predictions, risk management, diagnostics, and prevention. This study focuses on predicting COVID-19 patient shielding—identifying and protecting patients who are clinically extremely vulnerable from coronavirus. This study focuses on techniques used for the multi-label classification of medical text. Using the information published by the United Kingdom NHS and the World Health Organisation, we present a novel approach to predicting COVID-19 patient shielding as a multi-label classification problem. We use publicly available, de-identified ICU medical text data for our experiments. The labels are derived from the published COVID-19 patient shielding data. We present an extensive comparison across 12 multi-label classifiers from the simple binary relevance to neural networks and the most recent transformers. To the best of our knowledge this is the first comprehensive study, where such a range of multi-label classifiers for medical text are considered. We highlight the benefits of various approaches, and argue that, for the task at hand, both predictive accuracy and processing time are essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code to recreate the experiments and evaluations described in this paper is accessible at: https://github.com/vithyayogarajan/COVID-19-Patient-Shielding.

References

  1. Alimadadi, A., Aryal, S., Manandhar, I., Munroe, P.B., Joe, B., Cheng, X.: Artificial intelligence and machine learning to fight COVID-19. Physiol. Genomics 52(4), 200–202 (2020)

    Article  Google Scholar 

  2. Alsentzer, E., et al.: Publicly available clinical BERT embeddings. In: Proceedings of the 2nd Clinical Natural Language Processing Workshop, pp. 72–78 (2019)

    Google Scholar 

  3. Beltagy, I., Peters, M., Cohan, A.: Longformer: the long-document transformer. arXiv preprint arXiv:2004.05150 (2020)

  4. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. In: Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-8) (2014)

    Google Scholar 

  5. Clift, A.K., et al.: Living risk prediction algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults: national derivation and validation cohort study. BMJ 371 (2020). https://doi.org/10.1136/bmj.m3731. https://www.bmj.com/content/371/bmj.m3731

  6. Cosgriff, C.V., Ebner, D.K., Celi, L.A.: Data sharing in the era of COVID-19. Lancet Digit. Health 2(5), e224 (2020)

    Article  Google Scholar 

  7. Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q.V., Salakhutdinov, R.: Transformer-XL: attentive language models beyond a fixed-length context. In: ACL (2019)

    Google Scholar 

  8. Delafiori, J., et al.: Covid-19 automated diagnosis and risk assessment through metabolomics and machine learning. Anal. Chem. 93(4), 2471–2479 (2021)

    Article  Google Scholar 

  9. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)

    Google Scholar 

  10. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-3_5

    Chapter  Google Scholar 

  11. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  12. Gu, Y., et al.: Domain-specific language model pretraining for biomedical natural language processing. arXiv preprint arXiv:2007.15779 (2020)

  13. Gururangan, S., et al.: Don’t stop pretraining: adapt language models to domains and tasks. In: Proceedings of ACL (2020)

    Google Scholar 

  14. Ioannidis, J.P.: Precision shielding for covid-19: metrics of assessment and feasibility of deployment. BMJ Glob. Health 6(1), e004614 (2021)

    Article  Google Scholar 

  15. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)

    Article  Google Scholar 

  16. Khan, A.I., Shah, J.L., Bhat, M.M.: CoroNet: a deep neural network for detection and diagnosis of covid-19 from chest x-ray images. Comput. Methods Programs Biomed. 196, 105581 (2020)

    Article  Google Scholar 

  17. Khanday, A.M.U.D., Rabani, S.T., Khan, Q.R., Rouf, N., Din, M.M.U.: Machine learning based approaches for detecting covid-19 using clinical text data. Int. J. Inf. Technol. 12(3), 731–739 (2020)

    Google Scholar 

  18. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751. Association for Computational Linguistics (2014)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  20. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  21. López-Úbeda, P., Díaz-Galiano, M.C., Martín-Noguerol, T., Luna, A., Ureña-López, L.A., Martín-Valdivia, M.T.: Covid-19 detection in radiological text reports integrating entity recognition. Comput. Biol. Med. 127, 104066 (2020)

    Article  Google Scholar 

  22. Moons, E., Khanna, A., Akkasi, A., Moens, M.F.: A comparison of deep learning methods for ICD coding of clinical records. Appl. Sci. 10(15), 5262 (2020)

    Article  Google Scholar 

  23. Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J., Eisenstein, J.: Explainable prediction of medical codes from clinical text. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1. ACL, New Orleans (2018)

    Google Scholar 

  24. Pinter, G., Felde, I., Mosavi, A., Ghamisi, P., Gloaguen, R.: Covid-19 pandemic prediction for Hungary; a hybrid machine learning approach. Mathematics 8(6), 890 (2020)

    Article  Google Scholar 

  25. Pollard, T.J., Johnson, A.E.W., Raffa, J.D., Celi, L.A., Mark, R.G., Badawi, O.: The eICU collaborative research database, a freely available multi-center database for critical care research. Sci. Data 5, 180178 (2018)

    Article  Google Scholar 

  26. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333 (2011)

    Article  MathSciNet  Google Scholar 

  27. Read, J., Reutemann, P., Pfahringer, B., Holmes, G.: MEKA: a multi-label/multi-target extension to WEKA. J. Mach. Learn. Res. 17(21), 1–5 (2016). http://jmlr.org/papers/v17/12-164.html

  28. Vaswani, A., et al.: Attention is all you need. Adv. Neural. Inf. Process. Syst. 30, 5998–6008 (2017)

    Google Scholar 

  29. Yogarajan, V., Gouk, H., Smith, T., Mayo, M., Pfahringer, B.: Comparing high dimensional word embeddings trained on medical text to bag-of-words for predicting medical codes. In: Nguyen, N.T., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds.) ACIIDS 2020. LNCS (LNAI), vol. 12033, pp. 97–108. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41964-6_9

    Chapter  Google Scholar 

  30. Yogarajan, V., Montiel, J., Smith, T., Pfahringer, B.: Seeing the whole patient: using multi-label medical text classification techniques to enhance predictions of medical codes. arXiv preprint arXiv:2004.00430 (2020)

  31. Yogarajan, V., Montiel, J., Smith, T., Pfahringer, B.: Transformers for multi-label classification of medical text: an empirical comparison. In: Tucker, A., Henriques Abreu, P., Cardoso, J., Pereira Rodrigues, P., Riaño, D. (eds.) AIME 2021. LNCS (LNAI), vol. 12721, pp. 114–123. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77211-6_12

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vithya Yogarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yogarajan, V., Montiel, J., Smith, T., Pfahringer, B. (2022). Predicting COVID-19 Patient Shielding: A Comprehensive Study. In: Long, G., Yu, X., Wang, S. (eds) AI 2021: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13151. Springer, Cham. https://doi.org/10.1007/978-3-030-97546-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97546-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97545-6

  • Online ISBN: 978-3-030-97546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics