Skip to main content

Approximation Schemes for Materials with Discontinuities

  • Chapter
  • First Online:
Non-standard Discretisation Methods in Solid Mechanics

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 98))

  • 756 Accesses

Abstract

Damage and fracture phenomena are related to the evolution of discontinuities both in space and in time. This contribution investigates and devises methods from mathematical and numerical analysis to quantify them: Suitable mathematical formulations and time-discrete schemes for problems with discontinuities in time are presented. For the treatment of problems with discontinuities in space, the focus lies on FE-methods for minimization problems in spaces of functions of bounded variation. The developed methods are used to introduce fully discrete schemes for a rate-independent damage model and for the viscous approximation of a model for dynamic phase-field fracture. Convergence of the schemes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Almi, S. Belz, Consistent finite-dimensional approximation of phase-field models of fracture. Ann. Mat. Pura Appl. 198(4), 1191–1225 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Attouch, G. Buttazzo, G. Michaille, Variational Analysis in Sobolev and BV Spaces. MPS/SIAM Series on Optimization, vol. 6. (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia, 2006). Applications to PDEs and optimization

    Google Scholar 

  3. S. Almi, S. Belz, M. Negri, Convergence of discrete and continuous unilateral flows for Ambrosio-Tortorelli energies and application to mechanics. ESAIM M2AN 53(2), 659–699 (2018)

    Google Scholar 

  4. L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs (The Clarendon Press, Oxford University Press, New York, 2000)

    Google Scholar 

  5. S. Almi, M. Negri, Analysis of staggered evolutions for nonlinear energies in phase field fracture. Arch. Ration. Mech. Anal. (2019)

    Google Scholar 

  6. S. Bartels, Total variation minimization with finite elements: convergence and iterative solution. SIAM J. Numer. Anal. 50(3), 1162–1180 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Bartels, Error control and adaptivity for a variational model problem defined on functions of bounded variation. Math. Comp. 84(293), 1217–1240 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Bartels, Numerical Methods for Nonlinear Partial Differential Equations. Springer Series in Computational Mathematics, vol. 47 (Springer, Cham, 2015)

    Google Scholar 

  9. S. Bartels, Broken Sobolev space iteration for total variation regularized minimization problems. IMA J. Numer. Anal. 36(2), 493–502 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Bartels, Numerical Approximation of Partial Differential Equations. Texts in Applied Mathematics, vol. 64 (Springer, Cham, 2016)

    Google Scholar 

  11. S. Bartels, Error estimates for a class of discontinuous Galerkin methods for nonsmooth problems via convex duality relations (2020). arXiv:2004.09196

  12. S. Bartels, Nonconforming discretizations of convex minimization problems and precise relations to mixed methods (2020). arXiv:2002.02359

  13. D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, vol. 44. (Springer, Heidelberg, 2013)

    MATH  Google Scholar 

  14. S. Bartels, L. Diening, R.H. Nochetto, Unconditional stability of semi-implicit discretizations of singular flows. SIAM J. Numer. Anal. 56(3), 1896–1914 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. M.J. Borden, T.J.R. Hughes, C.M. Landis, A. Anvari, I.J. Lee, A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput. Methods Appl. Mech. Eng. 312, 130–166 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Bredies, K. Kunisch, T. Pock, Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Bělík, M. Luskin, A total-variation surface energy model for thin films of martensitic crystals. Interfaces Free Bound. 4(1), 71–88 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Bartels, M. Milicevic, Stability and experimental comparison of prototypical iterative schemes for total variation regularized problems. Comput. Methods Appl. Math. 16(3), 361–388 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Bartels, M. Milicevic, Iterative finite element solution of a constrained total variation regularized model problem. Discrete Contin. Dyn. Syst. Ser. S 10(6), 1207–1232 (2017)

    MathSciNet  MATH  Google Scholar 

  20. S. Bartels, M. Milicevic, Efficient iterative solution of finite element discretized nonsmooth minimization problems. Comput. & Math. Appl. 80(5), 588–603 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Bartels, M. Milicevic, M. Thomas, Numerical approach to a model for quasistatic damage with spatial \(BV\)-regularization, in Proceedings of the INdAM-ISIMM Workshop on Trends on Applications of Mathematics to Mechanics, Rome, Italy, September 2016, eds. by E. Rocca, U. Stefanelli, L. Truskinovsky, vol. 27 (Springer International Publishing, Cham, 2018), pp. 179–203

    Google Scholar 

  22. S. Bartels, M. Milicevic, M. Thomas, N. Weber, Fully discrete approximation of rate-independent damage models with gradient regularization. WIAS-Preprint 2707 (2020)

    Google Scholar 

  23. S. Bartels, R.H. Nochetto, A.J. Salgado, Discrete total variation flows without regularization. SIAM J. Numer. Anal. 52(1), 363–385 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Bartels, R.H. Nochetto, A.J. Salgado, A total variation diminishing interpolation operator and applications. Math. Comp. 84(296), 2569–2587 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Bartels, M. Ružička, Convergence of fully discrete implicit and semi-implicit approximations of singular parabolic equations. SIAM J. Numer. Anal. 58(1), 811–833 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. S.C. Brenner, L. Ridgway Scott, The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. (Springer, New York, 2008)

    Google Scholar 

  27. A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Chambolle, An Algorithm for Total Variation Minimization and Applications, vol. 20(2004), pp. 89–97. Special issue on mathematics and image analysis

    Google Scholar 

  29. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, vol. 4 (North-Holland Publishing Co., Amsterdam, 1978)

    Google Scholar 

  30. A. Chambolle, P.-L. Lions, Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Chambolle, T. Pock, An introduction to continuous optimization for imaging. Acta Numer. 25, 161–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Chambolle, T. Pock, On the ergodic convergence rates of a first-order primal-dual algorithm. Math. Program. 159(1–2, Ser. A), 253–287 (2016)

    Google Scholar 

  34. A. Chambolle, T. Pock, Crouzeix-Raviart approximation of the total variation on simplicial meshes. J. Math. Imaging Vision 62(6–7), 872–899 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Crouzeix, P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7(R-3), 33–75 (1973)

    Google Scholar 

  36. Y.-H. Dai, D. Han, X. Yuan, W. Zhang, A sequential updating scheme of the Lagrange multiplier for separable convex programming. Math. Comp. 86(303), 315–343 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Douglas Jr., H.H. Rachford Jr., On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  38. W. Deng, W. Yin, On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889–916 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Eckstein, D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Prog. 55(3, Ser. A), 293–318 (1992)

    Google Scholar 

  40. A. Ern, J.-L. Guermond, Theory and Practice of Finite Elements, vol. 159 (Springer Science & Business Media, Berlin, 2013)

    Google Scholar 

  41. C.M. Elliott, S.A. Smitheman, Numerical analysis of the TV regularization and \(H^{-1}\) fidelity model for decomposing an image into cartoon plus texture. IMA J. Numer. Anal. 29(3), 651–689 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Fortin, R. Glowinski, Augmented Lagrangian, Methods. Studies in Mathematics and its Applications, vol. 15. Applications to the Numerical Solution of Boundary Value Problems (North-Holland Publishing Co., Amsterdam, 1983) (Translated from the French by B. Hunt and D. C, Spicer, 1983)

    Google Scholar 

  43. G.A. Francfort, J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. X. Feng, M. von Oehsen, A. Prohl, Rate of convergence of regularization procedures and finite element approximations for the total variation flow. Numer. Math. 100(3), 441–456 (2005)

    Google Scholar 

  45. A. Giacomini, Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures. Calc. Var. Part. Diff. Equ. 22(2), 129–172 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer Series in Computational Physics. (Springer, New York, 1984)

    Google Scholar 

  47. D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. & Math. Appl. 2(1), 17–40 (1976)

    Article  MATH  Google Scholar 

  48. A.A. Griffith, Vi. The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. Lond. Ser. A Contain. Papers Math. Phys. Character 221(582–593), 163–198 (1921)

    Google Scholar 

  49. C. Hesch, A.J. Gil, R. Ortigosa, M. Dittmann, C. Bilgen, P. Betsch, M. Franke, A. Janz, K. Weinberg, A framework for polyconvex large strain phase-field methods to fracture. Comput. Methods Appl. Mech. Eng. 317, 649–683 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Herrmann, R. Herzog, S. Schmidt, J. Vidal-Núñez, G. Wachsmuth, Discrete total variation with finite elements and applications to imaging. J. Math. Imaging Vision 61(4), 411–431 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Hintermüller, K. Kunisch, Total bounded variation regularization as a bilaterally constrained optimization problem. SIAM J. Appl. Math. 64(4), 1311–1333 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  52. R. Herzog, C. Meyer, G. Wachsmuth, Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions. J. Math. Anal. Appl. 382(2), 802–813 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. B. Halphen, Q.S. Nguyen, Sur les matériaux standards généralisés. J. Mécanique 14, 39–63 (1975)

    MathSciNet  MATH  Google Scholar 

  54. C. Hesch, S. Schuß, M. Dittmann, M. Franke, K. Weinberg, Isogeometric analysis and hierarchical refinement for higher-order phase-field models. Comput. Methods Appl. Mech. Eng. 303, 185–207 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. B. He, X. Yuan, On the \(O(1/n)\) convergence rate of the Douglas-Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. S. Kontogiorgis, R.R. Meyer, A variable-penalty alternating directions method for convex optimization. Math. Prog. 83(1, Ser. A), 29–53 (1998)

    Google Scholar 

  57. C. Kuhn, R. Müller, A continuum phase field model for fracture. Eng. Fract. Mech. 77(18), 3625–3634 (2010)

    Article  Google Scholar 

  58. D. Knees, A. Mielke, C. Zanini, On the inviscid limit of a model for crack propagation. Math. Models Methods Appl. Sci. 18, 1529–1569 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. D. Knees, M. Negri, Convergence of alternate minimization schemes for phase-field fracture and damage. Math. Models Methods Appl. Sci. 27(9), 1743–1794 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  60. I. Kopacka, MPECs/MPCCs in function space: first order optimality concepts, path-following, and multilevel algorithms. na (2009)

    Google Scholar 

  61. D. Knees, R. Rossi, C. Zanini, A vanishing viscosity approach to a rate-independent damage model. Math. Models Methods Appl. Sci. 23(04), 565–616 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. D. Knees, R. Rossi, C. Zanini, A vanishing viscosity approach to a rate-independent damage model. Math. Models Methods Appl. Sci. 23(04), 565–616 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  63. P.-L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  64. G. Lazzaroni, R. Rossi, M. Thomas, R. Toader, Rate-independent damage in thermo-viscoelastic materials with inertia. J. Dyn. Diff. Equ. 30, 1311–1364 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  65. C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199(45–48), 2765–2778 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  66. A. Mielke, T. Roubíček, Rate-independent Systems: Theory and Application. Applied Mathematical Sciences, vol. 193 (Springer, Berlin, 2015)

    Google Scholar 

  67. A. Mielke, R. Rossi, G. Savaré, BV solutions and viscosity approximations of rate-independent systems. ESAIM Control Optim. Calc. Var. 18(1), 36–80 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  68. Y. Nesterov, Smooth minimization of non-smooth functions. Math. Program. 103(1, Ser. A), 127–152 (2005)

    Google Scholar 

  69. R.T. Rockafellar, Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  70. L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, vol. 60 (1992), pp. 259–268. Experimental mathematics: computational issues in nonlinear science (Los Alamos, NM, 1991)

    Google Scholar 

  71. T. Roubíček, Rate-independent processes in viscous solids at small strains. Math. Methods Appl. Sci. 32(7), 825–862 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  72. P.-A. Raviart, J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, in Mathematical aspects of finite element methods (Conference Proceedings, Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pp. 292–315. Lecture Notes in Mathematics, vol. 606 (1977)

    Google Scholar 

  73. R. Rossi, M. Thomas, From an adhesive to a brittle delamination model in thermo-visco-elasticity. ESAIM Control Optim. Calc. Var. 21, 1–59 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  74. R. Rossi, M. Thomas, Coupling rate-independent and rate-dependent processes: Existence results. SIAM J. Math. Anal. 49(2), 1419–1494 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  75. R. Rossi, M. Thomas, From adhesive to brittle delamination in visco-elastodynamics. Math. Models Methods Appl. Sci. 27(08), 1489–1546 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  76. A. Schlüter, A. Willenbücher, C. Kuhn, R. Müller, Phase field approximation of dynamic brittle fracture. Comput. Mech. 54(5), 1141–1161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  77. Y. Shen, M. Xu, On the \(O(1/t)\) convergence rate of Ye-Yuan’s modified alternating direction method of multipliers. Appl. Math. Comput. 226, 367–373 (2014)

    MathSciNet  MATH  Google Scholar 

  78. M. Thomas, C. Bilgen, K. Weinberg, Analysis and simulations for a phase-field fracture model at finite strains based on modified invariants. WIAS-Preprint 2456 (2017)

    Google Scholar 

  79. M. Thomas, C. Bilgen, K. Weinberg, Phase-field fracture at finite strains based on modified invariants: a note on its analysis and simulations. GAMM-Mitteilungen 40(3), 207–237 (2018)

    Article  MathSciNet  Google Scholar 

  80. M. Thomas, S. Tornquist, Discrete & continuous dynamical systems-S, 14(11), 3865–3924 (2021)

    Google Scholar 

  81. M. Thomas, C. Zanini, Cohesive zone-type delamination in visco-elasticity. Discrete & Cont. Dyn. Syst. - S 10(6), 1487–1517 (2017)

    MathSciNet  MATH  Google Scholar 

  82. J. Wang, B.J. Lucier, Error bounds for finite-difference methods for Rudin-Osher-Fatemi image smoothing. SIAM J. Numer. Anal. 49(2), 845–868 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support by the Deutsche Forschungsgemeinschaft in the Priority Program 1748 “Reliable simulation techniques in solid mechanics. Development of non- standard discretization methods, mechanical and mathematical analysis” within the project “Reliability of Efficient Approximation Schemes for Material Discontinuities Described by Functions of Bounded Variation”—Project Number 255461777 (TH 1935/1-2 and BA 2268/2-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Tornquist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bartels, S., Milicevic, M., Thomas, M., Tornquist, S., Weber, N. (2022). Approximation Schemes for Materials with Discontinuities. In: Schröder, J., Wriggers, P. (eds) Non-standard Discretisation Methods in Solid Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-030-92672-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92672-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92671-7

  • Online ISBN: 978-3-030-92672-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics