Skip to main content

Simulation of Multistage Autoignition in Diesel Engine Based on the Detailed Reaction Mechanism of Fuel Oxidation

  • Chapter
  • First Online:
Advances in Engine and Powertrain Research and Technology

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 114))

  • 895 Accesses

Abstract

Three-dimensional numerical simulations of mixture formation, autoignition, and combustion processes in a cylinder of a sample Diesel engine using the detailed reaction mechanism of fuel oxidation are performed. Particular attention is paid to the autoignition process. The three-stage nature of fuel autoignition in a Diesel engine characterized by the successive appearance of cool, blue, and hot flame exothermic centers has been observed computationally for the first time. The specific features of each of the three stages of autoignition and their interaction with each other are revealed. The location of the first centers of autoignition is identified. The influence of the parameters of numerical procedure on the calculated characteristics of multistage autoignition is investigated. The influence of the fuel Cetane number on the engine operation process is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kondratiev, V.N., Nikitin, E.E.: Kinetics and Mechanism of Gas-Phase Reactions. Nauka Publ., Moscow (1974)

    Google Scholar 

  2. Sokolik, A.S., Basevich, V.Ya.: About kinetic nature of autoignition in diesel engine conditions. Zh. Fiz. Khim. 28(11) (1954)

    Google Scholar 

  3. Sokolik, A.S.: Autoignition, Combustion, Flame and Detonation in Gases. USSR Acad. Sci. Publ., Moscow (1960)

    Google Scholar 

  4. Hwang, W., Dec, J., Sjöberg, M.: Spectroscopic and chemical-kinetic analysis of the phases of HCCI autoignition and combustion for single- and two-stage ignition fuels. Combust. Flame 154, 387–409 (2008)

    Article  Google Scholar 

  5. Westbrook, C.K.: Chemical kinetics of hydrocarbon ignition in practical combustion systems. Proc. Combust. Inst. 28, 1563–1577 (2000)

    Article  Google Scholar 

  6. Lee, C., et al.: The experimental investigation on the impact of toluene addition on low-temperature ignition characteristics of diesel spray. Fuel 254, 1–12 (2019)

    Google Scholar 

  7. Grajetzki, P., et al.: A novel reactivity index for SI engine fuels by separated weak flames in a micro flow reactor with a controlled temperature profile. Fuel 245, 429–437 (2019)

    Article  Google Scholar 

  8. Kundu, P., et al.: Importance of turbulence-chemistry interactions at low temperature engine conditions. Combust. Flame 183, 283–298 (2017)

    Article  Google Scholar 

  9. Basevich, V.Y., Vedeneev, V.I., Frolov, S.M., Romanovich, L.B.: Nonextensive principle for construction of oxidation and combustion mechanisms for normal alkane hydrocarbons: transition from C1–C2 to C3H8. Russ. J. Phys. Chem. 25(11), 87–96 (2006)

    Google Scholar 

  10. Basevich, V.Y., Belyaev, A.A., Frolov, S.M.: The mechanisms of oxidation and combustion of normal alkane hydrocarbons: the transition from C1–C3 to C4H10. Russ. J. Phys. Chem. B 2(5), 477–484 (2007)

    Article  Google Scholar 

  11. Basevich, V.Y., Belyaev, A.A., Frolov, S.M.: Mechanisms of the oxidation and combustion of normal akanes: passage from C1–C4 to C5H12. Russ. J. Phys. Chem. B 3(4), 629–635 (2009)

    Article  Google Scholar 

  12. Basevich, V.Y., Belyaev, A.A., Frolov, S.M.: Mechanisms of the oxidation and combustion of normal alkanes: transition from C1–C5 to C6H14. Russ. J. Phys. Chem. B 4(4), 634–640 (2010)

    Article  Google Scholar 

  13. Basevich, V.Y., Belyaev, A.A., Posvyanskii, V.S., Frolov, S.M.: Mechanism of the oxidation and combustion of normal paraffin hydrocarbons: transition from C1–C6 to C7H16. Russ. J. Phys. Chem. B 4(6), 985–994 (2010)

    Article  Google Scholar 

  14. Basevich, V.Y., Belyaev, A.A., Medvedev, S.N., Posvyanskii, V.S., Frolov, S.M.: Oxidation and combustion mechanisms of paraffin hydrocarbons: transfer from C1–C7 to C8H18, C9H20, and C10H22. Russ. J. Phys. Chem. B 5(6), 974–990 (2011)

    Article  Google Scholar 

  15. Frolov, S.M., Medvedev, S.N., Basevich, V.Y., Frolov, F.S.: Self-ignition of hydrocarbon–hydrogen–air mixtures. Int. J. Hydrogen Energy 38, 4177–4184 (2013)

    Article  Google Scholar 

  16. Basevich, V.Y., Belyaev, A.A., Posvyanskii, V.S., Frolov, S.M.: Mechanisms of the oxidation and combustion of normal paraffin hydrocarbons: transition from C1–C10 to C11–C16. Russ. J. Phys. Chem. B 7(2), 161–169 (2013)

    Article  Google Scholar 

  17. Basevich, V.Ya., Belyaev, A.A., Frolov, F.S., Frolov, S.M., Medvedev, S.N.: Detailed chemistry of heavy alkane hydrocarbon fuel oxidation: application to combustion and detonation of gaseous and liquid fuels. Transient Combustion and Detonation Phenomena: Fundamentals and Applications, pp. 14–25. TORUS PRESS, Moscow (2014)

    Google Scholar 

  18. Basevich, V.Y., Belyaev, A.A., Medvedev, S.N., Posvyanskii, V.S., Frolov, F.S., Frolov, S.M.: A detailed kinetic mechanism of multistage oxidation and combustion of isooctane. Russ. J. Phys. Chem. B 10(5), 801–809 (2016)

    Article  Google Scholar 

  19. Merker, G., Schwarz, C.: Grundlagen Verbrennungsmotoren. Simulation der Gemischbildung, Verbrennung, Schadstoffbildung und Aufladung. Praxis. 6 Auflage. Vieweg+Teubner Verlag, Wiesbaden (2012)

    Google Scholar 

  20. Chevalier, C., Warnatz, J., Melenk, H.: Automatic generation of reaction mechanisms for description of oxidation of higher hydrocarbons. Ber. Bunsenges. Phys. Chem. 94 (1990)

    Google Scholar 

  21. Stagni, A., Cuoci, A., Frassoldati, A., Faravelli, T., Ranzi, E.: Lumping and reduction of detailed kinetic schemes: an effective coupling. Ind. Eng. Chem. Res. 53, 9004–9016 (2014)

    Article  Google Scholar 

  22. Westbrook, C.K., Pitz, W.J., Herbinet, O., et al.: A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. Combust. Flame 156, 181–199 (2009)

    Article  Google Scholar 

  23. Basevich, V.Y., Frolov, S.M.: Kinetics of “blue” flames in the gas-phase oxidation and combustion of hydrocarbons and their derivatives. Russ. Chem. Rev. 76(9), 867–884 (2007)

    Article  Google Scholar 

  24. AVL FIRE®—Computational Fluid Dynamics for Conventional and Alternative Powertrain Development. https://www.avl.com/fire. Accessed 21 Feb 2021

  25. Blanchard, E., Visconti, J., Coblence, P., et al.: Der neue dCi 130 1,6I Dieselmotor von RENAULT, pp. 247–273. 19 Aachener Kolloquium Fahrzeug- und Motorentechnik (2010)

    Google Scholar 

  26. Sergeev, S.S., Frolov, S.M., Basara, B.: Numerical modeling of combustion and pollutants formation in cylinder of diesel using a detailed kinetic mechanism of n-heptane oxidation. Goren. Vzryv (Mosk.)—Combust. Explos. 10(2), 26–34 (2017)

    Google Scholar 

  27. Hanjalic, K., Popovac, M., Hadziabdic, M.: A robust near wall elliptic relaxation eddy-viscosity turbulence model for CFD. Int. J. Heat Fluid Flow 25, 897–901 (2004)

    Article  Google Scholar 

  28. Cohen, S.D., Hindmarsch, A.C.: CVODE User Guide (1994)

    Google Scholar 

  29. Liang, L., Stevens, J.G., Farell, J.T.: A dynamic multi-zone partitioning scheme for solving detailed chemical kinetics in reactive flow computations. Combust. Sci. Technol. 181, 1345–1371 (2009)

    Article  Google Scholar 

  30. Przulj, V., Basara, B.: Bounded convection schemes for unstructured grids. AIAA paper, 2001-2593 (2001)

    Google Scholar 

  31. Frolov, S.M., Basevich, V.Y., Frolov, F.S., Borisov, A.A., Smetanyuk, V.A., Avdeev, K.A., Gots, A.N.: Correlation between drop vaporization and self-ignition. Russ. J. Phys. Chem. B 3(3), 333–347 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the subsidies given to the Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences to implement the state assignment on the topic No. 0082-2019-0006 and to the Federal State Institution “Scientific Research Institute for System Analysis of the Russian Academy of Sciences” to implement the state assignment on the topic No. 0580-2021-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Frolov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frolov, S.M., Sergeev, S.S., Basevich, V.Y., Frolov, F.S., Basara, B., Priesching, P. (2022). Simulation of Multistage Autoignition in Diesel Engine Based on the Detailed Reaction Mechanism of Fuel Oxidation. In: Parikyan, T. (eds) Advances in Engine and Powertrain Research and Technology. Mechanisms and Machine Science, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-030-91869-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91869-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91868-2

  • Online ISBN: 978-3-030-91869-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics