Skip to main content

Byzantine Fault Tolerant Symmetric-Persistent Circle Evacuation

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2021)

Abstract

We consider (nf)-evacuation on a circle, an evacuation problem of a hidden exit on the perimeter of a unit radius circle for \(n>1\) robots, f of which are faulty. All the robots start at the center of the circle and move with maximum speed 1. Robots must first find the exit and then move there to evacuate in minimum time. The problem is considered complete when all the honest robots know the correct position of the exit and the last honest robot has evacuated through the exit. During the search, robots can communicate wirelessly.

We focus on symmetric-persistent algorithms, that is, algorithms in which all robots move directly to the circumference, start searching the circle moving in the same direction (cw or ccw), and do not stop moving around the circle before receiving information about the exit. We study the case of (n, 1) and (n, 2) evacuation. We first prove a lower bound of \(1+\frac{4\pi }{n}+2\sin (\frac{\pi }{2}-\frac{\pi }{n})\) for one faulty robot, even a crash-faulty one. We also observe an almost matching upper bound obtained by means of an earlier search algorithm. We finally study the case with two Byzantine robots and we provide an algorithm that achieves evacuation in time at most \(3+\frac{6\pi }{n}\) , for \(n\ge 9\), or at most \(3+\frac{6\pi }{n}+\delta (n)\), for \(n<9\), where \(\delta (n) \le 2\sin (\frac{3\pi }{2n})+ \sqrt{2-4\sin (\frac{3\pi }{2n})+4 \sin ^{2}{(\frac{3\pi }{2n})}}-2\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlswede, R., Wegener, I.: Search Problems. Wiley-Interscience, Hoboken (1987)

    Google Scholar 

  2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Springer, Heidelberg (2003)

    Google Scholar 

  3. Stone, L.: Theory of Optimal Search. Academic Press, New York (1975)

    MATH  Google Scholar 

  4. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79 (1996)

    Article  MathSciNet  Google Scholar 

  5. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theor. Comput. Sci. 361(2), 342–355 (2006)

    Article  MathSciNet  Google Scholar 

  6. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a line with faulty robots. Distrib. Comput. 32(6), 493–504 (2017). https://doi.org/10.1007/s00446-017-0296-0

    Article  MathSciNet  MATH  Google Scholar 

  7. Czyzowicz, J., et al.: Search on a line by byzantine robots. In: ISAAC, 2016, pp. 27:1–27:12 (2016)

    Google Scholar 

  8. Czyzowicz, J., Gasieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuatingrobots from an unknown exit located on the perimeter of a disc. In: DISC 2014, Springer, Austin, Texas (2014)

    Google Scholar 

  9. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating using face-to-face communication, CoRR abs/1501.04985

    Google Scholar 

  10. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 181–194. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19662-6_13

    Chapter  Google Scholar 

  11. Czyzowicz, J., Georgiou, K., Kranakis, E.: Group search and evacuation. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities. LNCS, vol. 11340, pp. 335–370. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_14

  12. Czyzowicz, J., et al.: Evacuation from a disc in the presence of a faulty robot. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 158–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72050-0_10

    Chapter  Google Scholar 

  13. Georgiou, K., Kranakis, E., Leonardos, N., Pagourtzis, A., Papaioannou, I.: Optimal circle search despite the presence of faulty robots. In: Dressler, F., Scheideler, C. (eds.) ALGOSENSORS 2019. LNCS, vol. 11931, pp. 192–205. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34405-4_11

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Papaioannou .

Editor information

Editors and Affiliations

A Appendix - \(\delta (n)\) Calculation

A Appendix - \(\delta (n)\) Calculation

As shown in Fig. 13, suppose at the end of round 3 the exit is not yet known, and possible exits are in D and E. Robot \(a_k\) placed at A, moves to evacuate to its farthest announcement D, at distance 2 (diameter, r=1). After \(t\le r\) the inspector robot moving from F will determine the correct exit and robot \(a_k\) may need to change direction to E, but the new path that will travel is not larger than the diameter of the circle.

Fig. 13.
figure 13

\(t\le 1\)

Fig. 14.
figure 14

\(t>1\)

We must show that \(BE \le BD\). Triangle CED is equilateral \((CE=CD=r=1)\) and angle \(C\hat{E}D=C\hat{D}E\). As a result angle \(B\hat{E}D \ge C\hat{E}D\). In triangle BED, \(B\hat{E}D \ge B\hat{D}E\) meaning that \(BD \ge BE\).

If \(t>1\), evacuation time is increased by \(\delta (n)\).

As we can see in Fig. 14, we must calculate the distance of path ABE. We know that \(AB=t\) so we continue to determine BE.

In triangle CBE, \(CE=1\), \(CB=1-BD=1-(2-t)=t-1\). In the worst case regarding evacuation, angle \(E\hat{C}D=\theta /2\). Now we can calculate BE:

$$\begin{aligned}&BE^2=CB^2+CE^2-2 \cdot CB \cdot CE \cdot \cos (\pi /n)\\&\, BE^2=t^2-2(t-1)(\cos (\pi /n) +1). \end{aligned}$$

The total distance the robot will travel to evacuate is \(AB+BE=t+BE\) and that surpasses the diameter by \(\delta (n)\) defined below:

$$\delta (n) = \left\{ \begin{array}{ll} 0 &{} \text{ if } t \le 1 \\ t+\sqrt{t^2-2(t-1)(\cos {(\pi /n)}+1)}-2, &{} \text{ if } t>1 \end{array} \right. $$

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leonardos, N., Pagourtzis, A., Papaioannou, I. (2021). Byzantine Fault Tolerant Symmetric-Persistent Circle Evacuation. In: Gąsieniec, L., Klasing, R., Radzik, T. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2021. Lecture Notes in Computer Science(), vol 12961. Springer, Cham. https://doi.org/10.1007/978-3-030-89240-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89240-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89239-5

  • Online ISBN: 978-3-030-89240-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics