Skip to main content

Hierarchical 3D Feature Learning forPancreas Segmentation

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2021)

Abstract

We propose a novel 3D fully convolutional deep network for automated pancreas segmentation from both MRI and CT scans. More specifically, the proposed model consists of a 3D encoder that learns to extract volume features at different scales; features taken at different points of the encoder hierarchy are then sent to multiple 3D decoders that individually predict intermediate segmentation maps. Finally, all segmentation maps are combined to obtain a unique detailed segmentation mask. We test our model on both CT and MRI imaging data: the publicly available NIH Pancreas-CT dataset (consisting of 82 contrast-enhanced CTs) and a private MRI dataset (consisting of 40 MRI scans). Experimental results show that our model outperforms existing methods on CT pancreas segmentation, obtaining an average Dice score of about 88%, and yields promising segmentation performance on a very challenging MRI data set (average Dice score is about 77%). Additional control experiments demonstrate that the achieved performance is due to the combination of our 3D fully-convolutional deep network and the hierarchical representation decoding, thus substantiating our architectural design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asaturyan, H., Gligorievski, A., Villarini, B.: Morphological and multi-level geometrical descriptor analysis in CT and MRI volumes for automatic pancreas segmentation. Comput. Med. Imaging Graph. 75, 1–13 (2019)

    Article  Google Scholar 

  2. Cai, J., Lu, L., Xie, Y., Xing, F., Yang, L.: Improving deep pancreas segmentation in CT and MRI images via recurrent neural contextual learning and direct loss function. arXiv preprint arXiv:1707.04912 (2017)

  3. Cai, J., Lu, L., Xie, Y., Xing, F., Yang, L.: Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 674–682. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_77

    Chapter  Google Scholar 

  4. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: CVPR, pp. 6299–6308 (2017)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: ImageNet: a large-scale hierarchical image database. In: Computer Society Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  6. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  7. Kerfoot, E., Clough, J., Oksuz, I., Lee, J., King, A.P., Schnabel, J.A.: Left-ventricle quantification using residual U-Net. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 371–380. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_40

    Chapter  Google Scholar 

  8. Khosravan, N., Mortazi, A., Wallace, M., Bagci, U.: PAN: projective adversarial network for medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 68–76. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_8

    Chapter  Google Scholar 

  9. LaLonde, R., et al.: INN: inflated neural networks for IPMN diagnosis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 101–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_12

    Chapter  Google Scholar 

  10. Li, H., Lü, Q., Chen, G., Huang, T., Dong, Z.: Convergence of distributed accelerated algorithm over unbalanced directed networks. IEEE Trans. Syst. Man Cybern. Syst., 1–12 (2019). https://doi.org/10.1109/TSMC.2019.2946287

  11. Liu, S., et al.: Automatic pancreas segmentation via coarse location and ensemble learning. IEEE Access 8, 2906–2914 (2020). https://doi.org/10.1109/ACCESS.2019.2961125

    Article  Google Scholar 

  12. Man, Y., Huang, Y., Feng, J., Li, X., Wu, F.: Deep Q learning driven CT pancreas segmentation with geometry-aware U-Net. IEEE Trans. Med. Imaging 38(8), 1971–1980 (2019). https://doi.org/10.1109/TMI.2019.2911588

    Article  Google Scholar 

  13. Milletari, F., Navab, N., Ahmadi, S.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571 (2016). https://doi.org/10.1109/3DV.2016.79

  14. Oberstein, P.E., Olive, K.P.: Pancreatic cancer: why is it so hard to treat? Ther. Adv. Gastroenterol. 6(4), 321–337 (2013)

    Article  Google Scholar 

  15. Roth, H.R., et al.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_68

    Chapter  Google Scholar 

  16. Roth, H.R., Lu, L., Farag, A., Sohn, A., Summers, R.M.: Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 451–459. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_52

    Chapter  Google Scholar 

  17. Roth, H.R., et al.: Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. Med. Image Anal. 45, 94–107 (2018)

    Article  Google Scholar 

  18. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV 2: inverted residuals and linear bottlenecks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  19. American Cancer Society: Cancer Facts & Figures. American Cancer Society (2021)

    Google Scholar 

  20. European Society of Radiology (ESR) communications@myesr.org Emanuele Neri Nandita de Souza Adrian Brady Angel Alberich Bayarri Christoph D. Becker Francesca Coppola Jacob Visser, E.S.: What the radiologist should know about artificial intelligence-an esr white paper. Insights into imaging 10, 1–8 (2019)

    Google Scholar 

  21. Wang, W., et al.: A fully 3D cascaded framework for pancreas segmentation. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 207–211 (2020). https://doi.org/10.1109/ISBI45749.2020.9098473

  22. Wang, Y., et al.: Pancreas segmentation using a dual-input V-Mesh network. Med. Image Anal. 69, 101958 (2021)

    Article  Google Scholar 

  23. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 318–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_19

    Chapter  Google Scholar 

  24. Yu, Q., Xie, L., Wang, Y., Zhou, Y., Fishman, E.K., Yuille, A.L.: Recurrent saliency transformation network: incorporating multi-stage visual cues for small organ segmentation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8280–8289 (2018). https://doi.org/10.1109/CVPR.2018.00864

  25. Zhou, Y., Xie, L., Shen, W., Wang, Y., Fishman, E.K., Yuille, A.L.: A fixed-point model for pancreas segmentation in abdominal CT scans. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 693–701. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_79

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Proietto Salanitri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Proietto Salanitri, F., Bellitto, G., Irmakci, I., Palazzo, S., Bagci, U., Spampinato, C. (2021). Hierarchical 3D Feature Learning forPancreas Segmentation. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2021. Lecture Notes in Computer Science(), vol 12966. Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87589-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87588-6

  • Online ISBN: 978-3-030-87589-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics