Skip to main content

Topological Receptive Field Model for Human Retinotopic Mapping

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

The mapping between visual inputs on the retina and neuronal activations in the visual cortex, i.e., retinotopic map, is an essential topic in vision science and neuroscience. Human retinotopic maps can be revealed by analyzing the functional magnetic resonance imaging (fMRI) signal responses to designed visual stimuli in vivo. Neurophysiology studies summarized that visual areas are topological (i.e., nearby neurons have receptive fields at nearby locations in the image). However, conventional fMRI-based analyses frequently generate non-topological results because they process fMRI signals on a voxel-wise basis, without considering the neighbor relations on the surface. Here we propose a topological receptive field (tRF) model which imposes the topological condition when decoding retinotopic fMRI signals. More specifically, we parametrized the cortical surface to a unit disk, characterized the topological condition by tRF, and employed an efficient scheme to solve the tRF model. We tested our framework on both synthetic and human fMRI data. Experimental results showed that the tRF model could remove the topological violations, improve model explaining power, and generate biologically plausible retinotopic maps. The proposed framework is general and can be applied to other sensory maps.

The work was supported in part by NIH (R21AG065942, RF1AG051710 and R01EB025032) and Arizona Alzheimer Consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 160, 106–154 (1962). https://doi.org/10.1113/jphysiol.1968.sp008455

    Article  Google Scholar 

  2. Wang, Y., Gaborski, R.S.: Computational modeling of topographic arrangements in human visual cortex (2012). https://doi.org/10.1016/j.tics.2014.03.008

  3. Schwartz, E.L.: Spatial mapping in the primate sensory projection: analytic structure and relevance to perception. Biol. Cybern. 25, 181–194 (1977). https://doi.org/10.1007/BF01885636

    Article  Google Scholar 

  4. Schwartz, E.L.: Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding. Vision Res. 20, 645–669 (1980). https://doi.org/10.1016/0042-6989(80)90090-5

    Article  Google Scholar 

  5. Glasser, M.F., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016). https://doi.org/10.1038/nature18933

    Article  Google Scholar 

  6. Li, X., Dumoulin, S.O., Mansouri, B., Hess, R.F.: The fidelity of the cortical retinotopic map in human amblyopia. Eur. J. Neurosci. 25, 1265–1277 (2007). https://doi.org/10.1111/j.1460-9568.2007.05356.x

    Article  Google Scholar 

  7. Olman, C.A., Van de Moortele, P.F., Schumacher, J.F., Guy, J.R., Uǧurbil, K., Yacoub, E.: Retinotopic mapping with spin echo BOLD at 7T. Magn. Reson. Imag. 28, 1258–1269 (2010). https://doi.org/10.1016/j.mri.2010.06.001

    Article  Google Scholar 

  8. Ogawa, S., et al.: Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys. J. 64, 803–812 (1993). https://doi.org/10.1016/S0006-3495(93)81441-3

    Article  Google Scholar 

  9. Sato, T.K., Nauhaus, I., Carandini, M.: Traveling waves in visual cortex. Neuron 75(2), 218–229 (2012)

    Article  Google Scholar 

  10. Dumoulin, S.O., Wandell, B.A.: Population receptive field estimates in human visual cortex. Neuroimage 39, 647–660 (2008). https://doi.org/10.1016/j.neuroimage.2007.09.034

    Article  Google Scholar 

  11. Kay, K.N., Winawer, J., Mezer, A., Wandell, B.A.: Compressive spatial summation in human visual cortex. J. Neurophysiol. 110, 481–494 (2013). https://doi.org/10.1152/jn.00105.2013

    Article  Google Scholar 

  12. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013). https://doi.org/10.1016/j.neuroimage.2013.05.041

    Article  Google Scholar 

  13. Wandell, B.A., Dumoulin, S.O., Brewer, A.A.: Visual field maps in human cortex. Neuron 56, 366–383 (2007). https://doi.org/10.1016/j.neuron.2007.10.012

    Article  Google Scholar 

  14. Warnking, J., et al.: fMRI retinotopic mapping—step by step. Neuroimage 17, 1665–1683 (2002). https://doi.org/10.1006/NIMG.2002.1304

    Article  Google Scholar 

  15. Schira, M.M., Tyler, C.W., Spehar, B., Breakspear, M.: Modeling magnification and anisotropy in the primate foveal confluence. PLoS Comput. Biol. 6, e1000651 (2010)

    Article  MathSciNet  Google Scholar 

  16. Qiu, A., Bitouk, D., Miller, M.I.: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator. IEEE Trans Med Imaging. 25, 1296–1306 (2006). https://doi.org/10.1109/TMI.2006.882143

    Article  Google Scholar 

  17. Benson, N.C., et al.:: The HCP 7T retinotopy dataset: description and pRF analysis. bioRxiv. 308247 (2018). https://doi.org/10.1101/308247

  18. Tu, Y., Ta, D., Gu, X., Lu, Z.L., Wang, Y.: Diffeomorphic registration for retinotopic mapping via quasiconformal mapping. In: Proceedings - International Symposium on Biomedical Imaging, pp. 687–691. IEEE Computer Society (2020). https://doi.org/10.1109/ISBI45749.2020.9098386

  19. Tu, Y., Tal, D., Lu, Z.L., Wang, Y.: Diffeomorphic smoothing for retinotopic mapping. In: Proceedings - International Symposium on Biomedical Imaging, pp. 534–538. IEEE Computer Society (2020). https://doi.org/10.1109/ISBI45749.2020.9098316

  20. Sereno, M.I., Mcdonald, C.T., Allman, J.M.: Analysis of retinotopic maps in extrastriate cortex. Cereb. Cortex. 4, 601–620 (1994). https://doi.org/10.1093/cercor/4.6.601

    Article  Google Scholar 

  21. Benson, N.C., Winawer, J.: Bayesian analysis of retinotopic maps. Elife. 7, (2018). https://doi.org/10.7554/eLife.40224

  22. Berlot, E., Formisano, E., De Martino, F.: Mapping frequency-specific tone predictions in the human auditory cortex at high spatial resolution. J. Neurosci. 38, 4934–4942 (2018). https://doi.org/10.1523/JNEUROSCI.2205-17.2018

    Article  Google Scholar 

  23. Lindquist, M.A., Meng Loh, J., Atlas, L.Y., Wager, T.D.: Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling. Neuroimage 45, S187–S198 (2009). https://doi.org/10.1016/j.neuroimage.2008.10.065

    Article  Google Scholar 

  24. Ta, D., Shi, J., Barton, B., Brewer, A., Lu, Z.-L., Wang, Y.: Characterizing human retinotopic mapping with conformal geometry: a preliminary study. In: Ourselin, S., Styner, M.A. (eds.) Medical Imaging 2014: Image Processing, p. 90342A (2014). https://doi.org/10.1117/12.2043570

  25. Ahlfors, L.V., Earle, C.J.: Lectures on quasiconformal mappings. Van Nostrand (1966). https://doi.org/10.1090/ulect/038

    Article  MATH  Google Scholar 

  26. Shahraray, B., Anderson, D.J.: Optimal estimation of contour properties by cross-validated regularization. IEEE Trans. Pattern Anal. Mach. Intell. 11, 600–610 (1989). https://doi.org/10.1109/34.24794

    Article  Google Scholar 

  27. Eilers, P.H.C.: A perfect smoother. Anal. Chem. 75, 3631–3636 (2003). https://doi.org/10.1021/ac034173t

    Article  Google Scholar 

  28. Lui, L.M., Lam, K.C., Wong, T.W., Gu, X.: Texture map and video compression using Beltrami representation. SIAM J. Imag. Sci. 6, 1880–1902 (2013). https://doi.org/10.1137/120866129

    Article  MathSciNet  MATH  Google Scholar 

  29. Kay, N., et al.: The HCP 7T Retinotopy Dataset. https://osf.io/bw9ec/

  30. Benson, N.C., et al.: The human connectome project 7 tesla retinotopy dataset: description and population receptive field analysis. J. Vis. 18, 1–22 (2018). https://doi.org/10.1167/18.13.23

    Article  Google Scholar 

  31. Sprengel, R., Rohr, K., Stiehl, H.S.: Thin-plate spline approximation for image registration. In: Annual International Conference of the IEEE Engineering in Medicine and Biology – Proceedings, pp. 1190–1191. IEEE (1996). https://doi.org/10.1109/IEMBS.1996.652767

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalin Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 155 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tu, Y., Ta, D., Lu, ZL., Wang, Y. (2021). Topological Receptive Field Model for Human Retinotopic Mapping. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12907. Springer, Cham. https://doi.org/10.1007/978-3-030-87234-2_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87234-2_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87233-5

  • Online ISBN: 978-3-030-87234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics