Skip to main content

Disentangled and Proportional Representation Learning for Multi-view Brain Connectomes

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12907))

Abstract

Diffusion MRI-derived brain structural connectomes or brain networks are widely used in the brain research. However, constructing brain networks is highly dependent on various tractography algorithms, which leads to difficulties in deciding the optimal view concerning the downstream analysis. In this paper, we propose to learn a unified representation from multi-view brain networks. Particularly, we expect the learned representations to convey the information from different views fairly and in a disentangled sense. We achieve the disentanglement via an approach using unsupervised variational graph auto-encoders. We achieve the view-wise fairness, i.e. proportionality, via an alternative training routine. More specifically, we construct an analogy between training the deep network and the network flow problem. Based on the analogy, the fair representations learning is attained via a network scheduling algorithm aware of proportionality. The experimental results demonstrate that the learned representations fit various downstream tasks well. They also show that the proposed approach effectively preserves the proportionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI, pp. 265–283 (2016)

    Google Scholar 

  2. Aganj, I., et al.: A Hough transform global probabilistic approach to multiple-subject diffusion MRI tractography. Med. Image Anal. 15(4), 414–425 (2011)

    Article  Google Scholar 

  3. Aminmansour, F. et al.: Learning macroscopic brain connectomes via group-sparse factorization. In: Advances in Neural Information Processing Systems, pp. 8847–8857 (2019)

    Google Scholar 

  4. Bengio, Y., et al.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  5. Bullmore, E., et al.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bullmore, E.T., Bassett, D.S.: Brain graphs: graphical models of the human brain connectome. Ann. Rev. Clin. Psychol. 7, 113–140 (2011)

    Article  Google Scholar 

  7. Caspell-Garcia, C., et al.: Multiple modality biomarker prediction of cognitive impairment in prospectively followed de novo Parkinson disease. PLoS ONE 12(5), e0175674 (2017)

    Article  Google Scholar 

  8. Higgins, I., et al.: beta-VAE: learning basic visual concepts with a constrained variational framework. ICLR 2(5), 6 (2017)

    Google Scholar 

  9. Huang, F., Chen, S.: Learning dynamic conditional gaussian graphical models. IEEE Trans. Knowl. Data Eng. 30(4), 703–716 (2017)

    Article  Google Scholar 

  10. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  11. Ktena, S.I., et al.: Distance metric learning using graph convolutional networks: application to functional brain networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 469–477. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_54

    Chapter  Google Scholar 

  12. Kumar, A., Rai, P., Daume, H.: Co-regularized multi-view spectral clustering. In: Advances in Neural Information Processing Systems, pp. 1413–1421 (2011)

    Google Scholar 

  13. Kushner, H.J., et al.: Convergence of proportional-fair sharing algorithms under general conditions. IEEE Trans. Wirel. Commun. 3(4), 1250–1259 (2004)

    Article  Google Scholar 

  14. Liu, J., Wang, C., Gao, J., Han, J.: Multi-view clustering via joint nonnegative matrix factorization. In: SIAM International Conference on Data Mining, pp. 252–260. SIAM (2013)

    Google Scholar 

  15. Luo, L., Xu, J., Deng, C., Huang, H.: Robust metric learning on Grassmann manifolds with generalization guarantees. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4480–4487 (2019)

    Google Scholar 

  16. Moyer, D., Ver Steeg, G., Tax, C.M., Thompson, P.M.: Scanner invariant representations for diffusion MRI harmonization. Magn. Reson. Med. 84(4), 2174–2189 (2020)

    Article  Google Scholar 

  17. Neher, P.F., Götz, M., Norajitra, T., Weber, C., Maier-Hein, K.H.: A machine learning based approach to fiber tractography using classifier voting. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 45–52. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_6

    Chapter  Google Scholar 

  18. Parker, G.J., et al.: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J. Magn. Reson. Imaging 18(2), 242–254 (2003)

    Article  Google Scholar 

  19. Paszke, A. et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  20. Poulin, P., et al.: Learn to track: deep learning for tractography. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 540–547. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_62

    Chapter  Google Scholar 

  21. Wang, Q., et al.: The added value of diffusion-weighted MRI-derived structural connectome in evaluating mild cognitive impairment: a multi-cohort validation. J. Alzheimer’s Dis. 64(1), 149–169 (2018)

    Article  Google Scholar 

  22. Wang, Q., Sun, M., Zhan, L., Thompson, P., Ji, S., Zhou, J.: Multi-modality disease modeling via collective deep matrix factorization. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1155–1164 (2017)

    Google Scholar 

  23. Wang, Q., Zhan, L., Thompson, P.M., Dodge, H.H., Zhou, J.: Discriminative fusion of multiple brain networks for early mild cognitive impairment detection. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 568–572. IEEE (2016)

    Google Scholar 

  24. Zhan, L., et al.: Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease. Front. Aging Neurosci. 7, 48 (2015)

    Article  Google Scholar 

  25. Zhang, X., et al.: Multi-view graph convolutional network and its applications on neuroimage analysis for Parkinson’s disease. In: AMIA Annual Symposium Proceedings, vol. 2018, p. 1147 (2018)

    Google Scholar 

  26. Zhang, Y., Huang, H.: New graph-blind convolutional network for brain connectome data analysis. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 669–681. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_52

    Chapter  Google Scholar 

  27. Zhang, Y., Zhan, L., Cai, W., Thompson, P., Huang, H.: Integrating heterogeneous brain networks for predicting brain disease conditions. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 214–222. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_24

    Chapter  Google Scholar 

  28. Zhang, Y., Zhan, L., Thompson, P.M., Huang, H.: Biological knowledge guided deep neural network for brain genotype-phenotype association study. In: Zhu, D., et al. (eds.) MBIA/MFCA -2019. LNCS, vol. 11846, pp. 84–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33226-6_10

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NSF IIS 1845666, 1852606, 1838627, 1837956, 1956002, 2045848, IIA 2040588, and NIH U01AG068057, R01AG049371, R01AG071243, RF1MH125928.

The NACC database was funded by NIA U01AG016976. The ADNI data were funded by the Alzheimer’s Disease Metabolomics Consortium (NIA R01AG046171, RF1AG051550 and 3U01AG024904-09S4). The PPMI data were obtained from the Parkinson’s Progression Markers Initiative (PPMI) database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Zhan, L., Wu, S., Thompson, P., Huang, H. (2021). Disentangled and Proportional Representation Learning for Multi-view Brain Connectomes. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12907. Springer, Cham. https://doi.org/10.1007/978-3-030-87234-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87234-2_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87233-5

  • Online ISBN: 978-3-030-87234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics