Skip to main content

Comparative Study of a New Problem Decomposition Method for Solving Global Optimization Problems on Loosely Coupled Systems

  • Conference paper
  • First Online:
Proceedings of the Fifth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’21) (IITI 2021)

Abstract

Loosely coupled computing systems is an emerging class of parallel computing systems. They are capable of solving large computationally expensive problems at a relatively low cost. During the computational process one or more computing nodes can be turned off resulting into loss of data. In global optimization problems this loss of data can lead not only to increasing the computation time but also to decreasing the solution quality. This paper presents a new problem decomposition method for loosely coupled systems that splits the search domain into multiply connected subdomains. Such an approach allows minimizing the negative impact of node termination. Results of the comparative experimental investigation with a use of benchmark functions are presented in this paper which demonstrate the increase in solution quality comparing to the traditional decomposition methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Voevodin, V.V., Voevodin, V.V.: Parallel Computations. SPb.: BHV-Peterburg, p. 608. (2004)

    Google Scholar 

  2. Sakharov, M.K., Karpenko, A.P., Velisevich, Ya.I. Multi-memetic mind evolutionary computation algorithm for loosely coupled systems of desktop computers. Sci. Educ. Bauman MSTU 10, 438–452 (2015). https://doi.org/10.7463/1015.0814435

  3. Sakharov, M., Karpenko, A.: Parallel multi-memetic global optimization algorithm for optimal control of polyarylenephthalide’s thermally-stimulated luminescence. In: Le Thi, H.A., Le, H.M., Pham Dinh, T. (eds.) WCGO 2019. AISC, vol. 991, pp. 191–201. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-21803-4_20

    Chapter  Google Scholar 

  4. Sakharov, M., Koledina, K., Gubaydullin, I., Karpenko, A.: Optimal control of chemical reactions with the parallel multi-memetic algorithm. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2020. CCIS, vol. 1263, pp. 71–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55326-5_6

    Chapter  Google Scholar 

  5. Sakharov, M., Houllier, T., Lépine, T.: Mind evolutionary computation co-algorithm for optimizing optical systems. In: Kovalev, S., Tarassov, V., Snasel, V., Sukhanov, A. (eds.) IITI 2019. AISC, vol. 1156, pp. 476–486. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50097-9_48

    Chapter  Google Scholar 

  6. Karpenko, A.P., Sakharov, M.K.: New adaptive multi-memetic global optimization algorithm. In: Herald of the Bauman Moscow State Technical University, Series Natural Science, no. 2, pp. 17–31 (2019). https://doi.org/10.18698/1812-3368-2019-2-17-31

  7. Sakharov, M., Karpenko, A.: Multi-memetic mind evolutionary computation algorithm based on the landscape analysis. In: Fagan, D., Martín-Vide, C., O’Neill, M., Vega-Rodríguez, M.A. (eds.) TPNC 2018. LNCS, vol. 11324. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04070-3

    Chapter  Google Scholar 

  8. Karpenko, A.P.: Modern algorithms of search engine optimization. In: Nature-Inspired Optimization Algorithms. Moscow, Bauman MSTU Publication, 446 p. (2014). (in Russian)

    Google Scholar 

  9. Chengyi, S., Yan, S., Wanzhen, W.: A survey of MEC: 1998–2001. In: 2002 IEEE International Conference on Systems, Man and Cybernetics IEEE SMC2002, Hammamet, Tunisia, 6–9 October 2002, vol. 6, pp. 445–453. Institute of Electrical and Electronics Engineers Inc. (2002)

    Google Scholar 

  10. Jie, J., Zeng, J.: Improved mind evolutionary computation for optimizations. In: Proceedings of 5th World Congress on Intelligent Control and Automation, Hang Zhou, China, pp. 2200–2204 (2004)

    Google Scholar 

  11. Jie, J., Han, C., Zeng, J.: An extended mind evolutionary computation model for optimizations. Appl. Math. Comput. 185, 1038–1049 (2007)

    MATH  Google Scholar 

  12. Sobol, I.M.: Distribution of points in a cube and approximate evaluation of integrals. USSR Comput. Maths. Phys. 7, 86–112 (1967)

    Article  MathSciNet  Google Scholar 

  13. Weise, T.: Global Optimization Algorithms - Theory and Application, 758 p. University of Kassel (2008)

    Google Scholar 

  14. Sakharov, M., Karpenko, A.: New parallel multi-memetic MEC-based algorithm for loosely coupled systems. In: Proceedings of the VII International Conference on Optimization Methods and Application “Optimization and applications” OPTIMA-2016, M, pp. 124–126 (2016)

    Google Scholar 

  15. Sokolov, A.P., Schetinin, V.N.: Modeling of phases adhesion in composite materials based on spring finite element with zero length. Key Eng. Mater. 780, 3–9 (2018). https://doi.org/10.4028/www.scientific.net/KEM.780.3

  16. Floudas A. A., et al.: Handbook of Test Problems in Local and Global Optimization, 441 p. Kluwer, Dordrecht (1999)

    Google Scholar 

  17. Agasiev, T.: Characteristic feature analysis of continuous optimization problems based on Variability Map of objective function for optimization algorithm configuration. Open Comput. Sci. 10(1), 97–111 (2020). https://doi.org/10.1515/comp-2020-0114

    Article  Google Scholar 

  18. Mersmann, O., et al.: Exploratory landscape analysis. In: Proceedings of the 13th annual conference on Genetic and evolutionary computation, pp. 829–836. ACM (2011). https://doi.org/10.1145/2001576.2001690

  19. Agasiev, T., Karpenko, A.: The program system for automated parameter tuning of optimization algorithms. Procedia Comput. Sci. 103, 347–354 (2017). https://doi.org/10.1016/j.procs.2017.01.120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sakharov, M., Karpenko, A. (2022). Comparative Study of a New Problem Decomposition Method for Solving Global Optimization Problems on Loosely Coupled Systems. In: Kovalev, S., Tarassov, V., Snasel, V., Sukhanov, A. (eds) Proceedings of the Fifth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’21). IITI 2021. Lecture Notes in Networks and Systems, vol 330. Springer, Cham. https://doi.org/10.1007/978-3-030-87178-9_25

Download citation

Publish with us

Policies and ethics