Skip to main content

A Minimal Model of Potential Energy Surface for the CO2 – CO System

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Analytical models of potential energy surfaces are desirable for applications to classical and quantum molecular dynamics simulations, as well as calculation of spectroscopic properties. Here, we present a minimal model based on the expansion in spherical harmonics of the interaction potential between CO2 and CO molecules, both assumed as rigid rotors. This approach consists in determining a minimal number of energy points related to representative mutual orientations of the molecules (configurations) by ab initio calculations. The spherical harmonics expansion represents an exact transformation of these quantum chemical input data. The model permits interpolation and possible implementation of sets of input data at a higher level of theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lombardi, A., Laganà, A., Pirani, F., Palazzetti, F., Lago, N.F.: Carbon Oxides in Gas Flows and Earth and Planetary Atmospheres: State-to-State Simulations of Energy Transfer and Dissociation Reactions. In: Murgante, B., et al. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 17–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39643-4_2

    Chapter  Google Scholar 

  2. Pramhaas, V., et al.: Interplay between CO disproportionation and oxidation: on the origin of the CO reaction onset on atomic layer deposition-grown Pt/ZrO2 model catalysts. ACS Catal. 11, 208–214 (2021). https://doi.org/10.1021/acscatal.0c03974

    Article  Google Scholar 

  3. Barreto, P.R.P., et al.: Gas phase Boudouard reactions involving singlet–singlet and singlet–triplet CO vibrationally excited states: implications for the non-equilibrium vibrational kinetics of CO/CO2 plasmas. The European Physical Journal D 71(10), 1 (2017). https://doi.org/10.1140/epjd/e2017-80103-1

    Article  Google Scholar 

  4. Legon, A.C., Suckley, A.P.: Infrared diode-laser spectroscopy and Fourier-transform microwave spectroscopy of the (CO2, CO) dimer in a pulsed jet. J. Chem. Phys. 91, 4440–4447 (1989). https://doi.org/10.1063/1.456780

    Article  Google Scholar 

  5. Parish, C.A., Augspurger, J.D., Dykstra, C.E.: Weakly bound complexes of carbon monoxide. J. Chem. Phys. 96, 2069–2079 (1992). https://doi.org/10.1021/j100184a011

    Article  Google Scholar 

  6. Raducu, V., Dahoo, J.R., Brosset, P., Gauthier-Roy, B., Abouaf-Marguin, L.: The CO: CO2 complex in argon matrices: experimental evidence for two conformations with spontaneous interconversion. J. Chem. Phys. 102, 9235 (1995). https://doi.org/10.1063/1.468873

    Article  Google Scholar 

  7. Raducu, V., Gauthier-Roy, B., Dahoo, R., Abouaf-Marguin, L.: Conformational dynamics of the CO: CO2 complex in argon matrices. I. Thermodynamical considerations derived from the observed kinetics. J. Chem. Phys. 105, 10092–10096 (1996). doi: https://doi.org/10.1063/1.472838

  8. Langlet, J., et al.: Modelling of some structural and vibrational properties of CO: CO2 complexes in gas phase and embedded in solid argon. J. Mol. Struct. 489, 145–159 (1999). https://doi.org/10.1016/S0022-2860(98)00911-9

    Article  Google Scholar 

  9. Muenther, J.S., Bhattacharjee, J.S.: The electric dipole moment of the CO2 – CO van der Waals Complex. J. Mol Spectr. 190, 290–293 (1998). https://doi.org/10.1006/jmsp.1998.7601

    Article  Google Scholar 

  10. Sheybani-Deloui, S., Barclay, A.J., Michaelian, K.H., McKellar, A.R.W., Moazzen-Ahmadi, N.: Communication: spectroscopic observation of the O-bonded T-shaped isomer of the CO-CO2 dimer and two of its intermolecular frequencies. J. Chem. Phys. 143, 121101 (2015). https://doi.org/10.1063/1.4932043

    Article  Google Scholar 

  11. Badri, A., Shirkov, L., Jaidane, N.E., Hochlaf, M.: Explicitly correlated potential energy surface of the CO2–CO van der Waals dimer and applications. Phys. Chem. Chem. Phys. 21, 15871 (2019). https://doi.org/10.1039/c9cp02657f

    Article  Google Scholar 

  12. Palazzetti, F., Munusamy, E., Lombardi, A., Grossi, G., Aquilanti, V.: Spherical and hyperspherical representation of potential energy surfaces for intermolecular interactions. Int. J. Quant. Chem. 111, 318–332 (2011). https://doi.org/10.1002/qua.22688

    Article  Google Scholar 

  13. Van der Avoird, A., Wormer, P.E.S., Szalevicz, R.: From Intermolecular potentials to the spectra of van der Waals molecules, and vice versa. Chem. Rev. 94, 1931 (1994). https://doi.org/10.1021/cr00031a009

    Article  Google Scholar 

  14. Aquilanti, V., Bartolomei, M., Cappelletti, D., Carmona-Novillo, E., Pirani, F.: The N2–N2 system: an experimental potential energy surface and calculated rotovibrational levels of the molecular nitrogen dimer. J. Chem- Phys. 117, 615 (2002). https://doi.org/10.1063/1.1482696

    Article  Google Scholar 

  15. Aquilanti, V., et al.: Molecular beam scattering of aligned oxygen molecules. The nature of the bond in the O2−O2 dimer. J. Am. Chem. Soc. 121, 10794 (1999). doi: https://doi.org/10.1021/ja9917215

  16. Barreto, P.R.P., Cruz, A.C.P.S., Euclides, H.O., Albernaz, A.F., Correa, E.: Spherical harmonics representation of the potential energy surface for the H2⋯H2 van der Waals complex. J. Mol. Model. 26(10), 1–8 (2020). https://doi.org/10.1007/s00894-020-04537-8

    Article  Google Scholar 

  17. Aquilanti, V., Bartolomei, M., Carmona-Novillo, E., Pirani, F.: The asymmetric dimer N2–O2: characterization of the potential energy surface and quantum mechanical calculation of rotovibrational levels. J. Chem. Phys. 118, 2214 (2003). https://doi.org/10.1063/1.1533015

    Article  Google Scholar 

  18. Bartolomei, M., et al.: The intermolecular potential in NO–N2 and (NO–N2)+ systems: implications for the neutralization of ionic molecular aggregates. Phys. Chem. Chem. Phys. 10, 5993–6001 (2008). https://doi.org/10.1039/B808200F

    Article  Google Scholar 

  19. Barreto, P.R.P., et al.: The spherical-harmonics representation for the interaction between diatomic molecules: the general case and applications to COCO and COHF. J. Mol. Spectr. 337, 163–177 (2017). https://doi.org/10.1016/j.jms.2017.05.009

    Article  Google Scholar 

  20. Barreto, P.R.P., Ribas, V.W., Palazzetti, F.: Potential energy surface for the H2O–H2 system. J. Phys. Chem. A 113, 15047–15054 (2009). https://doi.org/10.1021/jp9051819

    Article  Google Scholar 

  21. Barreto, P.R.B., et al.: Potential energy surfaces for interactions of H2O with H2, N2 and O2: a hyperspherical harmonics representation, and a minimal model for the H2O–rare-gas-atom systems. Comp. Theor. Chem. 990, 53–61 (2012). https://doi.org/10.1016/j.comptc.2011.12.024

    Article  Google Scholar 

  22. Caglioti, C., Palazzetti, F.: Potential energy surfaces for water interacting with diatomic heteronuclear molecules: H2O – HF as a case study. Chem. Phys. Lett. 776, 138692 (2021). https://doi.org/10.1016/j.cplett.2021.138692

    Article  Google Scholar 

  23. Barreto, P.R.P., Vilela, A.F.A., Lombardi, A., Maciel, G.S., Palazzetti, F., Aquilanti, V.: The hydrogen peroxide−rare gas systems: quantum chemical calculations and hyperspherical harmonic representation of the potential energy surface for atom−floppy molecule interactions. J. Phys. Chem. A 111, 12754–12762 (2007). https://doi.org/10.1021/jp076268v

    Article  Google Scholar 

  24. Barreto, P.R.P., Albernaz, A.F., Palazzetti, F., Lombardi, A., Grossi, G., Aquilanti, V.: Hyperspherical representation of potential energy surfaces: intermolecular interactions in tetra-atomic and penta-atomic systems. Phys. Scr. 84, 028111 (2011). https://doi.org/10.1088/0031-8949/84/02/028111

    Article  Google Scholar 

  25. Maciel, G.S., Barreto, P.R.P., Palazzetti, F., Lombardi, A., Aquilanti, V.: A quantum chemical study of H2S2: Intramolecular torsional mode and intermolecular interactions with rare gases. J. Chem. Phys. 129, 164302 (2008). https://doi.org/10.1063/1.2994732

    Article  Google Scholar 

  26. Barreto, P.R.P., Albernaz, A.F., Palazzetti, F.: Potential energy surfaces for van der Waals complexes of rare gases with H2S and H2S2: extension to xenon interactions and hyperspherical harmonics representation. Int. J. Quant. Chem. 112, 834–847 (2012). https://doi.org/10.1002/qua.23073

    Article  Google Scholar 

  27. Lombardi, A., Palazzetti, F., Maciel, G.S., Aquilanti, V., Sevryuk, M.B.: Simulation of oriented collision dynamics of simple chiral molecules. Int. J. Quant. Chem. 111, 1651–1658 (2010). https://doi.org/10.1002/qua.22816

    Article  Google Scholar 

  28. Gaussian 09, et al.: Gaussian, Inc., Wallingford CT (2016)

    Google Scholar 

Download references

Acknowledgement

The authors thank the University of Perugia for financial support through the AMIS project (“Dipartimenti di Eccellenza-2018-2022”). AL acknowledges the Dipartimento di Chimica, Biologia e Biotecnologie for funding under the “Fondo Ricerca di Base 2019” program and the Italian Space Agency (ASI) Life in Space project (ASI N. 2019-3-U.0). NFL thanks the Dipartimento di Chimica, Biologia e Biotecnologie for funding under the “Fondo Ricerca di Base 2020” program. The authors also thank the OU Supercomputing Center for Education & Research (OSCER) at the University of Oklahoma (OU) for the allocated computing time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Palazzetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caglioti, C., Lago, M.N.F., Lombardi, A., Palazzetti, F. (2021). A Minimal Model of Potential Energy Surface for the CO2 – CO System. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12958. Springer, Cham. https://doi.org/10.1007/978-3-030-87016-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87016-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87015-7

  • Online ISBN: 978-3-030-87016-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics