Skip to main content

A Holistic Framework for AI Systems in Industrial Applications

  • Conference paper
  • First Online:
Innovation Through Information Systems (WI 2021)

Part of the book series: Lecture Notes in Information Systems and Organisation ((LNISO,volume 47))

Included in the following conference series:

Abstract

Although several promising use cases for artificial intelligence (AI) for manufacturing companies have been identified, these are not yet widely used. Existing literature covers a variety of frameworks, methods and processes related to AI systems. However, the application of AI systems in manufacturing companies lacks a uniform understanding of components and functionalities as well as a structured process that supports developers and project managers in planning, implementing, and optimizing AI systems. To close this gap, we develop a generic conceptual model of an AI system for the application in manufacturing systems and a four-phase model to guide developers and project managers through the realization of AI systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leo Kumar, S.P.: State of the art-intense review on artificial intelligence systems application in process planning and manufacturing. Eng. Appl. Artif. Intell. 65, 294–329 (2017)

    Article  Google Scholar 

  2. Lee, J., Davari, H., Singh, J., Pandhare, V.: Industrial artificial intelligence for industry 4.0-based manufacturing systems. Manuf. Lett. 18, 20–23 (2018)

    Article  Google Scholar 

  3. Monostori, L., Markus, A., van Brussel, H., Westkämpfer, E.: Machine learning approaches to manufacturing. CIRP Ann. 45, 675–712 (1996)

    Article  Google Scholar 

  4. Patel, A.R., Ramaiya, K.K., Bhatia, C.V., Shah, H.N., Bhavsar, S.N.: Artificial intelligence: prospect in mechanical engineering field—a review. In: Kotecha, K., Piuri, V., Shah, H.N., Patel, R. (eds.) Data Science and Intelligent Applications, vol. 52, pp. 267–282. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-4474-3_31

    Chapter  Google Scholar 

  5. Wuest, T., Weimer, D., Irgens, C., Thoben, K.-D.: Machine learning in manufacturing: advantages, challenges, and applications. Prod. Manuf. Res. 4, 23–45 (2016)

    Google Scholar 

  6. Capgemini: Scaling AI in manufacturing operations: A Practitioners’ Perspective (2019)

    Google Scholar 

  7. Mehrabi, M., Ulsoy, A., Koren, Y.: Reconfigurable manufacturing systems: key to future manufacturing. J. Intell. Manuf. 11, 403–419 (2000). https://doi.org/10.1023/A:1008930403506

    Article  Google Scholar 

  8. Russell, S.J., Norvig, P., Davis, E., Edwards, D.: Artificial intelligence. A Modern Approach. Pearson, Boston, Columbus, Indianapolis, New York, San Francisco, Upper Saddle River, Amsterdam, Cape Town, Dubai, London, Madrid, Milan, Munich, Paris, Montreal, Toronto, Delhi, Mexico City, Sao Paulo, Sydney, Hong Kong, Seoul, Singapore, Taipei, Tokyo (2016)

    Google Scholar 

  9. Nalchigar, S., Yu, E.: Conceptual modeling for business analytics: a framework and potential benefits. In: 2017 IEEE 19th Conference on Business Informatics (CBI), Thessaloniki, pp. 369–378 (2017)

    Google Scholar 

  10. Wang, S., Wan, J., Zhang, D., Li, D., Zhang, C.: Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Comput. Netw. 101, 158–168 (2016)

    Article  Google Scholar 

  11. van den Heuvel, W.-J., Tamburri, D.A.: Model-driven ml-ops for intelligent enterprise applications: vision, approaches and challenges. In: Shishkov, B. (ed.) BMSD 2020. LNBIP, vol. 391, pp. 169–181. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52306-0_11

    Chapter  Google Scholar 

  12. Simard, P.Y., et al.: Machine teaching a new paradigm for building machine learning systems (2017)

    Google Scholar 

  13. Sculley, D., et al.: Hidden technical debt in machine learning systems. Advances in Neural Information Processing Systems (2015)

    Google Scholar 

  14. Usama, F., David, H., Stolorz, E.P.: KDD for Science Data Analysis: Issues and examples (1996)

    Google Scholar 

  15. Wirth, R., Hipp, J.: CRISP-DM: Towards a standard process model for data mining (2000)

    Google Scholar 

  16. Microsoft: Team data science process documentation. Learn how to use the Team Data Science Process, an Agile, Iterative Data Science Methodology for Predictive Analytics Solutions and Intelligent Applications. https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/

  17. Kessler, R.: Towards a cross-company data and model platform for SMEs. In: Abramowicz, W., Corchuelo, R. (eds.) BIS 2019. LNBIP, vol. 373, pp. 661–671. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36691-9_55

    Chapter  Google Scholar 

  18. Colomo-Palacios, R.: Towards a Software engineering framework for the design, construction and deployment of machine learning-based solutions in digitalization processes. In: Visvizi, A., Lytras, M.D. (eds.) RIIFORUM 2019. SPC, pp. 343–349. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30809-4_31

    Chapter  Google Scholar 

  19. Amershi, S., et al.: Software engineering for machine learning: a case study. In: IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice, Montreal, pp. 291–300 (2019)

    Google Scholar 

  20. Kessler, R., Gómez, J.M.: Implikationen von machine learning auf das datenmanagement in unternehmen . HMD Praxis der Wirtschaftsinformatik 57(1), 89–105 (2020). https://doi.org/10.1365/s40702-020-00585-z

    Article  Google Scholar 

  21. Moreb, M., Mohammed, T.A., Bayat, O.: A novel software engineering approach toward using machine learning for improving the efficiency of health systems. IEEE Access 8, 23169–23178 (2020)

    Article  Google Scholar 

  22. Kriens, P., Verbelen, T.: Software engineering practices for machine learning (2019)

    Google Scholar 

  23. Lwakatare, L.E., Raj, A., Bosch, J., Olsson, H.H., Crnkovic, I.: A taxonomy of software engineering challenges for machine learning systems: an empirical investigation. In: Kruchten, P., Fraser, S., Coallier, F. (eds.) XP 2019. LNBIP, vol. 355, pp. 227–243. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19034-7_14

    Chapter  Google Scholar 

  24. Chen, A., et al.: Developments in MLflow. Proceedings of the Fourth International Workshop on Data Management for End-to-End Machine Learning, 1–4 (2020)

    Google Scholar 

  25. Baylor, D., et al.: TFX - A TensorFlow-Based Production-Scale Machine Learning Platform, pp. 1387–1395 (2017)

    Google Scholar 

  26. Hevner, M.: Park, Ram: design science in information systems research. MIS Q. 28, 75 (2004)

    Article  Google Scholar 

  27. Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37, 337–355 (2013)

    Article  Google Scholar 

  28. Wand, Y., Monarchi, D.E., Parsons, J., Woo, C.C.: Theoretical foundations for conceptual modelling in information systems development. Decis. Support Syst. 15, 285–304 (1995)

    Article  Google Scholar 

  29. Brodie, M.L. (ed.): On conceptual modelling. Perspectives from Artificial Intelligence, Databases, and Programming Languages, Springer, Berlin (1986)

    Google Scholar 

  30. Rishe, N.: Database design. In: The Semantic Modeling Approach. . McGraw-Hill, New York (1992)

    Google Scholar 

  31. Felderer, M., Reussner, R., Rumpe, B.: Software engineering und software-engineering-forschung im zeitalter der digitalisierung. Informatik Spektrum 44(2), 82–94 (2020). https://doi.org/10.1007/s00287-020-01322-y

    Article  Google Scholar 

  32. Selcuk, S.: Predictive maintenance, its implementation and latest trends. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 231, 1670–1679 (2017)

    Article  Google Scholar 

  33. Maass, W., Parsons, J., Purao, S., Storey, V.C., Woo, C.: Data-driven meets theory-driven research in the era of big data: opportunities and challenges for information systems research. JAIS 19(12), 1253–1273 (2018)

    Article  Google Scholar 

  34. Kohne, T., Ranzau, H., Panten, N., Weigold, M.: Comparative study of algorithms for optimized control of industrial energy supply systems. Energy. Inform. 3(1), 1–19 (2020). https://doi.org/10.1186/s42162-020-00115-7

    Article  Google Scholar 

  35. Khan, A., Turowski, K.: A survey of current challenges in manufacturing industry and preparation for industry 4.0. Proc. First Int. Sci. Conf. Intell. Inf. Technol. Ind. 450, 15–26 (2016). https://doi.org/10.1007/978-3-319-33609-1_2

    Article  Google Scholar 

  36. Hofmann, P., Jöhnk, J., Protschky, D., Urbach, N.: Developing purposeful ai use cases - a structured method and its application in project management. In: Entwicklungen, Chancen und Herausforderungen der Digitalisierung. Band 1.Proceedings der 15. Internationalen Tagung Wirtschaftsinformatik 2020, GITO Verlag, pp. 33–49 (2020)

    Google Scholar 

  37. Krallmann, H.: Systemanalyse im unternehmen. In: Prozessorientierte Methoden der Wirtschaftsinformatik. München, Oldenbourg (2007)

    Google Scholar 

  38. Stanley, J.C.: The influence of fisher’s “the design of experiments” on educational research thirty years later. Am. Educ. Res. J. 3, 223–229 (1966)

    Article  Google Scholar 

  39. Box, J.F.: R.A. Fisher and the design of experiments, 1922–1926. Am. Stat. 34, 17 (1980)

    Google Scholar 

  40. Bauer, D., et al.: Wie IT die energieflexibilitätsvermarktung von industrieunternehmen ermöglicht und die energiewende unterstützt. HMD 58, 102–115 (2020). https://doi.org/10.1365/s40702-020-00679-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Kaymakci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaymakci, C., Wenninger, S., Sauer, A. (2021). A Holistic Framework for AI Systems in Industrial Applications. In: Ahlemann, F., Schütte, R., Stieglitz, S. (eds) Innovation Through Information Systems. WI 2021. Lecture Notes in Information Systems and Organisation, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-030-86797-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86797-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86796-6

  • Online ISBN: 978-3-030-86797-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics