Skip to main content

Phenomenological Tests of Gravity on Cosmological Scales

  • Chapter
  • First Online:
Book cover Modified Gravity and Cosmology

Abstract

The late-time accelerated expansion of the Universe [1, 2] (see Refs. [3,4,5,6] for recent comprehensive reviews on the subject) is still a mystery and needs to be addressed by theoretical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/CobayaSampler/cobaya.

References

  1. Supernova Search Team, Collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998). arXiv:astro-ph/9805201

  2. Supernova Cosmology Project Collaboration, S. Perlmutter et al., Measurements of and from 42 high redshift supernovae. Astrophys. J. 517, 565–586 (1999) arXiv:astro-ph/9812133

  3. R.R. Caldwell, M. Kamionkowski, The physics of cosmic acceleration. Ann. Rev. Nucl. Part. Sci. 59, 397–429 (2009). arXiv:0903.0866

  4. D.H. Weinberg, M.J. Mortonson, D.J. Eisenstein, C. Hirata, A.G. Riess, E. Rozo, Observational probes of cosmic acceleration. Phys. Rept. 530, 87–255 (2013). arXiv:1201.2434

  5. A. Joyce, B. Jain, J. Khoury, M. Trodden, Beyond the cosmological standard model. Phys. Rept. 568, 1–98 (2015). arXiv:1407.0059

  6. P. Bull et al., Beyond \(\Lambda \)CDM: problems, solutions, and the road ahead. Phys. Dark Univ. 12, 56–99 (2016). arXiv:1512.05356

  7. L. Amendola, S. Tsujikawa, Dark Energy: Theory and Observations (Cambridge University Press, 2010)

    Google Scholar 

  8. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Modified gravity and cosmology. Phys. Rept. 513, 1–189 (2012). arXiv:1106.2476

  9. K. Koyama, Cosmological tests of modified gravity. Rept. Prog. Phys. 79(4), 046902 (2016). arXiv:1504.04623

  10. M. Ishak, Testing general relativity in cosmology. Living Rev. Rel. 22(1), 1 (2019). arXiv:1806.10122

  11. P.G. Ferreira, Cosmological tests of gravity. Ann. Rev. Astron. Astrophys. 57, 335–374 (2019). arXiv:1902.10503

  12. S. Weinberg, The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Martin, Everything you always wanted to know about the cosmological constant problem (But were afraid to ask). Comptes Rendus Phys. 13, 566–665 (2012). arXiv:1205.3365

  14. LIGO Scientific, Virgo, Collaboration, B.P. Abbott et al., GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(16), 161101 (2017). arXiv:1710.05832

  15. A. Goldstein et al., An ordinary short gamma-ray burst with extraordinary implications: fermi-GBM detection of GRB 170817A. Astrophys. J. 848(2), L14 (2017). arXiv:1710.05446

  16. P. Creminelli, F. Vernizzi, Dark energy after GW170817 and GRB170817A. Phys. Rev. Lett. 119(25), 251302 (2017). arXiv:1710.05877

  17. J. Sakstein, B. Jain, Implications of the neutron star merger GW170817 for cosmological scalar-tensor theories. Phys. Rev. Lett. 119(25), 251303 (2017). arXiv:1710.05893

  18. J.M. Ezquiaga, M. Zumalacárregui, Dark energy after GW170817: dead ends and the road ahead. Phys. Rev. Lett. 119(25), 251304 (2017). arXiv:1710.05901

  19. T. Baker, E. Bellini, P.G. Ferreira, M. Lagos, J. Noller, I. Sawicki, Strong constraints on cosmological gravity from GW170817 and GRB 170817A. Phys. Rev. Lett. 119(25), 251301 (2017). arXiv:1710.06394

  20. S. Nojiri, S.D. Odintsov, Cosmological bound from the neutron star merger GW170817 in modified gravity. arXiv:1711.00492

  21. S. Boran, S. Desai, E.O. Kahya, R.P. Woodard, GW170817 falsifies dark matter emulators. Phys. Rev. D97(4), 041501 (2018). arXiv:1710.06168

  22. L. Amendola, M. Kunz, I.D. Saltas, I. Sawicki, Fate of large-scale structure in modified gravity after GW170817 and GRB170817A. Phys. Rev. Lett. 120(13), 131101 (2018). arXiv:1711.04825

  23. M. Crisostomi, K. Koyama, Vainshtein mechanism after GW170817. Phys. Rev. D97(2), 021301 (2018). arXiv:1711.06661

  24. D. Langlois, R. Saito, D. Yamauchi, K. Noui, Scalar-tensor theories and modified gravity in the wake of GW170817. Phys. Rev. D97(6), 061501 (2018). arXiv:1711.07403

  25. A.E. Gumrukcuoglu, M. Saravani, T.P. Sotiriou, Hořava gravity after GW170817. Phys. Rev. D97(2), 024032 (2017). arXiv:1711.08845

  26. L. Heisenberg, S. Tsujikawa, Dark energy survivals in massive gravity after GW170817: SO(3) invariant. JCAP 1801(01), 044 (2017). arXiv:1711.09430

  27. C.D. Kreisch, E. Komatsu, Cosmological constraints on horndeski gravity in light of GW170817. JCAP 1812(12), 030 arXiv:1712.02710

  28. A. Dima, F. Vernizzi, Vainshtein screening in scalar-tensor theories before and after GW170817: constraints on theories beyond horndeski. Phys. Rev. D97(10), 101302 (2018). arXiv:1712.04731

  29. S. Peirone, K. Koyama, L. Pogosian, M. Raveri, A. Silvestri, Large-scale structure phenomenology of viable Horndeski theories. Phys. Rev. D97(4), 043519 (2018). arXiv:1712.00444

  30. M. Crisostomi, K. Koyama, Self-accelerating universe in scalar-tensor theories after GW170817. Phys. Rev. D97(8), 084004 (2018). arXiv:1712.06556

  31. E.V. Linder, No slip gravity. JCAP 1803(03), 005. arXiv:1801.01503

  32. R. Kase, S. Tsujikawa, Dark energy scenario consistent with GW170817 in theories beyond Horndeski gravity. Phys. Rev. D97(10), 103501 (2018). arXiv:1802.02728

  33. R.A. Battye, F. Pace, D. Trinh, Gravitational wave constraints on dark sector models. Phys. Rev. D98(2), 023504 (2018). arXiv:1802.09447

  34. Y. Akrami, P. Brax, A.-C. Davis, V. Vardanyan, Neutron star merger GW170817 strongly constrains doubly coupled bigravity. Phys. Rev. D 97(12), 124010 (2018). arXiv:1803.09726

  35. L. Lombriser, A. Taylor, Breaking a dark degeneracy with gravitational waves. JCAP 1603(03), 031 (2016). arXiv:1509.08458

  36. P. Brax, C. Burrage, A.-C. Davis, The speed of galileon gravity. JCAP 1603(03), 004 (2016). arXiv:1510.03701

  37. L. Lombriser, N.A. Lima, Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure. Phys. Lett. B765, 382–385 (2017). arXiv:1602.07670

  38. L. Pogosian, A. Silvestri, What can cosmology tell us about gravity? constraining Horndeski gravity with \(\Sigma \) and \(\mu \). Phys. Rev. D94(10), 104014 (2016). arXiv:1606.05339

  39. D. Bettoni, J.M. Ezquiaga, K. Hinterbichler, M. Zumalac.rregui, Speed of gravitational waves and the fate of scalar-tensor gravity. Phys. Rev. D95(8), 084029 (2017). arXiv:1608.01982

  40. P. Creminelli, G. D’Amico, J. Norena, F. Vernizzi, The effective theory of quintessence: the w\(<\)-1 side unveiled. JCAP 0902(018), (2009). arXiv:0811.0827

  41. G. Gubitosi, F. Piazza, F. Vernizzi, The effective field theory of dark energy. JCAP 1302, 032 (2013). arXiv:1210.0201. (JCAP1302, 032 (2013))

  42. J.K. Bloomfield, É.É. Flanagan, M. Park, S. Watson, Dark energy or modified gravity? an effective field theory approach. JCAP 1308, 010 (2013). ([arXiv:1211.7054])

    Article  ADS  MathSciNet  Google Scholar 

  43. J. Gleyzes, D. Langlois, F. Piazza, F. Vernizzi, Essential building blocks of dark energy. JCAP 1308, 025 (2013). arXiv:1304.4840

  44. J. Gleyzes, D. Langlois, F. Piazza, F. Vernizzi, Healthy theories beyond Horndeski. arXiv:1404.6495

  45. E. Bellini, I. Sawicki, Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity. JCAP 1407, 050 (2014). arXiv:1404.3713

  46. W. Hu, I. Sawicki, A parameterized post-friedmann framework for modified gravity. Phys. Rev. D 76, 104043 (2007). arXiv:0708.1190

  47. E. Bertschinger, P. Zukin, Distinguishing modified gravity from dark energy. Phys. Rev. D 78, 024015 (2008). arXiv:0801.2431

  48. M.A. Amin, R.V. Wagoner, R.D. Blandford, A sub-horizon framework for probing the relationship between the cosmological matter distribution and metric perturbations. Mon. Not. Roy. Astron. Soc. 390, 131–142 (2008). arXiv:0708.1793

  49. T. Baker, P.G. Ferreira, C.D. Leonard, M. Motta, New gravitational scales in cosmological surveys. Phys. Rev. D90(12), 124030 (2014). arXiv:1409.8284

  50. A. De Felice, T. Kobayashi, S. Tsujikawa, Effective gravitational couplings for cosmological perturbations in the most general scalar-tensor theories with second-order field equations. Phys. Lett. B 706, 123–133 (2011). arXiv:1108.4242

  51. A.R. Solomon, Y. Akrami, T.S. Koivisto, Linear growth of structure in massive bigravity. JCAP 1410, 066 (2014). arXiv:1404.4061

  52. F. Könnig, Y. Akrami, L. Amendola, M. Motta, A.R. Solomon, Stable and unstable cosmological models in bimetric massive gravity. Phys. Rev. D 90, 124014 (2014). arXiv:1407.4331

  53. S. Casas, M. Kunz, M. Martinelli, V. Pettorino, Linear and non-linear modified gravity forecasts with future surveys. Phys. Dark Univ. 18, 73–104 (2017). arXiv:1703.01271

  54. T. Baker, P. Bull, Observational signatures of modified gravity on ultra-large scales. Astrophys. J. 811, 116 (2015). arXiv:1506.00641

  55. M. Martinelli, R. Dalal, F. Majidi, Y. Akrami, S. Camera, E. Sellentin, Ultra-large-scale approximations and galaxy clustering: debiasing constraints on cosmological parameters, To appear (2021). arXiv:2106.15604

  56. T. Okamoto, W. Hu, CMB lensing reconstruction on the full sky. Phys. Rev. D 67, 083002 (2003). arXiv:astro-ph/0301031

  57. Euclid, Collaboration, A. Blanchard et al., Euclid preparation: VII: forecast validation for Euclid cosmological probes. arXiv:1910.09273

  58. V. Desjacques, D. Jeong, F. Schmidt, Large-scale galaxy bias. Phys. Rept. 733, 1–193 (2018). arXiv:1611.09787

  59. N. Kaiser, Clustering in real space and in redshift space. Mon. Not. Roy. Astron. Soc. 227, 1–27 (1987)

    Article  ADS  Google Scholar 

  60. W.E. Ballinger, J.A. Peacock, A.F. Heavens, Measuring the cosmological constant with redshift surveys. Mon. Not. Roy. Astron. Soc. 282, 877–888 (1996). arXiv:astro-ph/9605017

  61. N. Kaiser, Weak gravitational lensing of distant galaxies. Astrophys. J. 388, 272 (1992)

    Article  ADS  Google Scholar 

  62. M. LoVerde, N. Afshordi, Extended Limber Approximation. Phys. Rev. D 78, 123506 (2008). arXiv:0809.5112

  63. T. Giannantonio, C. Porciani, J. Carron, A. Amara, A. Pillepich, Constraining primordial non-Gaussianity with future galaxy surveys. Mon. Not. Roy. Astron. Soc. 422, 2854–2877 (2012). arXiv:1109.0958

  64. T.D. Kitching, J. Alsing, A.F. Heavens, R. Jimenez, J.D. McEwen, L. Verde, The limits of cosmic shear. Mon. Not. Roy. Astron. Soc. 469(3), 2737–2749 (2017). arXiv:1611.04954

  65. M. Kilbinger et al., Precision calculations of the cosmic shear power spectrum projection. Mon. Not. Roy. Astron. Soc. 472(2), 2126–2141 (2017). arXiv:1702.05301

  66. P. Lemos, A. Challinor, G. Efstathiou, The effect of Limber and flat-sky approximations on galaxy weak lensing. JCAP 05, 014 (2017). arXiv:1704.01054

  67. P.L. Taylor, T.D. Kitching, J.D. McEwen, T. Tram, Testing the cosmic shear spatially-flat universe approximation with generalized lensing and shear spectra. Phys. Rev. D 98(2), 023522 (2018). arXiv:1804.03668

  68. A. Spurio Mancini, F. Köhlinger, B. Joachimi, V. Pettorino, B.M. Schäfer, R. Reischke, S. Brieden, M. Archidiacono, J. Lesgourgues, KiDS+GAMA: constraints on Horndeski gravity from combined large-scale structure probes. arXiv:1901.03686

  69. A. Lewis, A. Challinor, A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models. Astrophys. J. 538, 473–476 (2000). arXiv:astro-ph/9911177

  70. D. Blas, J. Lesgourgues, T. Tram, The cosmic linear anisotropy solving system (CLASS) II: approximation schemes. JCAP 1107, 034 (2011). arXiv:1104.2933

  71. G.-B. Zhao, L. Pogosian, A. Silvestri, J. Zylberberg, Searching for modified growth patterns with tomographic surveys. Phys. Rev. D 79, 083513 (2009). arXiv:0809.3791

  72. A. Hojjati, L. Pogosian, G.-B. Zhao, Testing gravity with CAMB and CosmoMC. JCAP 1108, 005 (2011). arXiv:1106.4543

  73. A. Zucca, L. Pogosian, A. Silvestri, G.-B. Zhao, MGCAMB with massive neutrinos and dynamical dark energy. JCAP 2019(05), 001 (2020). arXiv:1901.05956

  74. W. Hu, I. Sawicki, Models of f(R) cosmic acceleration that evade solar-system tests. Phys. Rev. D 76, 064004 (2007). arXiv:0705.1158

  75. Planck, Collaboration, P.A.R. Ade et al., Planck 2015 results. XIV: dark energy and modified gravity. Astron. Astrophys. 594(A14) (2016). arXiv:1502.01590

  76. A. Lewis, S. Bridle, Cosmological parameters from CMB and other data: a Monte Carlo approach. Phys. Rev. D 66, 103511 (2002). arXiv:astro-ph/0205436

  77. J. Zuntz, M. Paterno, E. Jennings, D. Rudd, A. Manzotti, S. Dodelson, S. Bridle, S. Sehrish, J. Kowalkowski, CosmoSIS: modular cosmological parameter estimation. Astron. Comput. 12, 45–59 (2015). arXiv:1409.3409

  78. B. Audren, J. Lesgourgues, K. Benabed, S. Prunet, Conservative constraints on early cosmology: an illustration of the Monte Python cosmological parameter inference code. JCAP 1302, 001 (2013). arXiv:1210.7183

  79. N.E. Chisari, M.L.A. Richardson, J. Devriendt, Y. Dubois, A. Schneider, M.C. Brun, Amandine Le, R.S. Beckmann, S. Peirani, A. Slyz, C. Pichon, The impact of baryons on the matter power spectrum from the Horizon-AGN cosmological hydrodynamical simulation. Mon. Not. Roy. Astron. Soc. 480(3), 3962–3977 (2018). arXiv:1801.08559

  80. J. Alsing, T. Charnock, S. Feeney, B. Wandelt, Fast likelihood-free cosmology with neural density estimators and active learning. Mon. Not. Roy. Astron. Soc. 488(3), 4440–4458 (2019). arXiv:1903.00007

  81. M. Ntampaka et al., The role of machine learning in the next decade of cosmology. BAAS 51, 14 (2019). arXiv:1902.10159

  82. S. He, Y. Li, Y. Feng, S. Ho, S. Ravanbakhsh, W. Chen, B. Póczos, Learning to predict the cosmological structure formation. Proc. Nat. Acad. Sci. 116(28), 13825–13832 (2019). arXiv:1811.06533

  83. N. Chartier, B. Wandelt, Y. Akrami, F. Villaescusa-Navarro, CARPool: fast, accurate computation of large-scale structure statistics by pairing costly and cheap cosmological simulations. Mon. Not. Roy. Astron. Soc. 503(2), 1897–1914 (2021)

    Google Scholar 

  84. B. Jain, E. Bertschinger, Second order power spectrum and nonlinear evolution at high redshift. Astrophys. J. 431, 495 (1994). arXiv:astro-ph/9311070

  85. M.H. Goroff, B. Grinstein, S.J. Rey, M.B. Wise, Coupling of modes of cosmological mass density fluctuations. Astroph. J. 311, 6–14 (1986)

    Google Scholar 

  86. F. Bouchet, S. Colombi, E. Hivon, R. Juszkiewicz, Perturbative Lagrangian approach to gravitational instability. Astron. Astrophys. 296, 575 (1995). arXiv:astro-ph/9406013

  87. T. Matsubara, Resumming cosmological perturbations via the lagrangian picture: one-loop results in real space and in redshift space. Phys. Rev. D 77, 063530 (2008). arXiv:0711.2521

  88. M. Crocce, R. Scoccimarro, Renormalized cosmological perturbation theory. Phys. Rev. D 73, 063519 (2006). arXiv:astro-ph/0509418

  89. J.J.M. Carrasco, M.P. Hertzberg, L. Senatore, The effective field theory of cosmological large scale structures. JHEP 09(082) (2012). arXiv:1206.2926

  90. Z. Vlah, M. White, A. Aviles, A Lagrangian effective field theory. JCAP 09, 014 (2015). arXiv:1506.05264

  91. A. Perko, L. Senatore, E. Jennings, R.H. Wechsler, Biased tracers in redshift space in the EFT of large-scale structure (2016). arXiv:1610.09321

  92. G. Cusin, M. Lewandowski, F. Vernizzi, Nonlinear effective theory of dark energy. JCAP 1804(04), 061 (2018). arXiv:1712.02782

  93. G. Cusin, M. Lewandowski, F. Vernizzi, Dark energy and modified gravity in the effective field theory of large-scale structure. JCAP 1804(04), 005 (2018). arXiv:1712.02783

  94. M. Bartelmann, E. Kozlikin, R. Lilow, C. Littek, F. Fabis, I. Kostyuk, C. Viermann, L. Heisenberg, S. Konrad, D. Geiss, Cosmic structure formation with kinetic field theory. arXiv:1905.01179

  95. F. Bernardeau, S. Colombi, E. Gaztanaga, R. Scoccimarro, Large scale structure of the universe and cosmological perturbation theory. Phys. Rept. 367, 1–248 (2002). arXiv:astro-ph/0112551

  96. Planck, Collaboration, N. Aghanim et al., Planck 2018 results. VI: cosmological parameters. arXiv:1807.06209

  97. F. Beutler, C. Blake, M. Colless, D.H. Jones, L. Staveley-Smith et al., The 6dF galaxy survey: baryon acoustic oscillations and the local hubble constant. Mon. Not. Roy. Astron. Soc. 416, 3017–3032 (2011). arXiv:1106.3366

  98. A.J. Ross, L. Samushia, C. Howlett, W.J. Percival, A. Burden, M. Manera, The clustering of the SDSS DR7 main Galaxy sample-I: a 4 per cent distance measure at z = 0.15. Mon. Not. Roy. Astron. Soc. 449(1), 835–847 (2015). arXiv:1409.3242

  99. BOSS Collaboration, S. Alam et al., The clustering of galaxies in the completed SDSS-III baryon oscillation spectroscopic survey: cosmological analysis of the DR12 galaxy sample. Mon. Not. Roy. Astron. Soc. 470(3), 2617–2652 (2017). arXiv:1607.03155

  100. D.M. Scolnic et al., The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined pantheon sample. Astrophys. J. 859(2), 101 (2018). arXiv:1710.00845

  101. DES, Collaboration, T.M.C. Abbott et al., Dark energy Survey year 1 results: cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D98(4), 043526 (2018). arXiv:1708.01530

  102. S. Joudaki et al., KiDS-450: testing extensions to the standard cosmological model, Mon. Not. Roy. Astron. Soc. 471(2), 1259–1279 (2017). arXiv:1610.04606

  103. DES Collaboration, T.M.C. Abbott et al., Dark energy survey year 1 results: constraints on extended cosmological models from galaxy clustering and weak lensing. Phys. Rev. D99(12), 123505 (2019). arXiv:1810.02499

  104. KiDS, Collaboration, M. Asgari et al., KiDS-1000 cosmology: cosmic shear constraints and comparison between two point statistics. 7 (2020). arXiv:2007.15633

  105. L. Verde, T. Treu, A.G. Riess, Tensions between the early and the late universe, in Nature Astronomy 2019 (2019). arXiv:1907.10625

  106. A.G. Riess, S. Casertano, W. Yuan, L.M. Macri, D. Scolnic, Large magellanic cloud cepheid standards provide a 1% foundation for the determination of the hubble constant and stronger evidence for physics beyond \(\Lambda \)CDM. Astrophys. J. 876(1), 85 (2019). arXiv:1903.07603

  107. K.C. Wong et al., H0LiCOW XIII. A 2.4% measurement of \(H_{0}\) from lensed quasars: \(5.3\sigma \) tension between early and late-Universe probes. arXiv:1907.04869

  108. J. Espejo, S. Peirone, M. Raveri, K. Koyama, L. Pogosian, A. Silvestri, Phenomenology of large scale structure in scalar-tensor theories: joint prior covariance of \(w_{\rm DE}\), \(\Sigma \) and \(\mu \) in Horndeski. Phys. Rev. D99(2), 023512 (2018). arXiv:1809.01121

  109. DESI, Collaboration, A. Aghamousa et al., The DESI experiment Part I: science,targeting, and survey design. arXiv:1611.00036

  110. DESI, Collaboration, A. Aghamousa et al., The DESI experiment Part II: instrument design. arXiv:1611.00037

  111. LSST Collaboration, Z. Ivezic et al., LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873(2), 111 (2019). arXiv:0805.2366

  112. LSST Science, LSST Project, Collaboration, P.A. Abell et al., LSST science book, version 2.0. arXiv:0912.0201

  113. LSST Dark Energy Science, Collaboration, D. Alonso et al., The LSST dark energy science collaboration (DESC) science requirements document. arXiv:1809.01669

  114. P. Bull, P.G. Ferreira, P. Patel, M.G. Santos, Late-time cosmology with 21cm intensity mapping experiments. arXiv:1405.1452

  115. M.J. Jarvis, D. Bacon, C. Blake, M.L. Brown, S.N. Lindsay, A. Raccanelli, M. Santos, D. Schwarz, Cosmology with SKA radio continuum surveys. arXiv:1501.03825

  116. D. Bacon et al., Synergy between the large synoptic survey telescope and the square kilometre array. PoS AASKA14(145) (2015). arXiv:1501.03977

  117. T.D. Kitching, D. Bacon, M.L. Brown, P. Bull, J.D. McEwen, M. Oguri, R. Scaramella, K. Takahashi, K. Wu, D. Yamauchi, Euclid & SKA synergies. arXiv:1501.03978

  118. S. Yahya, P. Bull, M.G. Santos, M. Silva, R. Maartens, P. Okouma, B. Bassett, Cosmological performance of SKA HI galaxy surveys. Mon. Not. Roy. Astron. Soc. 450(3), 2251–2260 (2015). arXiv:1412.4700

  119. M.G. Santos et al., Cosmology with a SKA HI intensity mapping survey. arXiv:1501.03989

  120. SKA Collaboration, D.J. Bacon et al., Cosmology with phase 1 of the square kilometre array: red book 2018: technical specifications and performance forecasts. Submitted to: Publ. Astron. Soc. Austral. (2018). arXiv:1811.02743

  121. H. Aihara et al., The hyper suprime-cam SSP survey: overview and survey design. Publ. Astron. Soc. Jap. 70, S4 (2018). arXiv:1704.05858

  122. N. Tamura et al., Prime focus spectrograph (PFS) for the subaru telescope: overview, recent progress, and future perspectives. Proc. SPIE Int. Soc. Opt. Eng. 9908, 99081M (2016). arXiv:1608.01075

  123. EUCLID Collaboration, Collaboration, R. Laureijs et al., Euclid definition study report. arXiv:1110.3193

  124. L. Amendola et al., Cosmology and fundamental physics with the Euclid satellite. Living Rev. Rel. 21(1), 2 (2018). arXiv:1606.00180

  125. D. Spergel et al., Wide-field infrarred survey telescope-astrophysics focused telescope assets WFIRST-AFTA 2015 report. arXiv:1503.03757

  126. R. Hounsell et al., Simulations of the WFIRST supernova survey and forecasts of cosmological constraints. Astrophys. J. 867(1), 23 (2017). arXiv:1702.01747

  127. O. Doré et al., Cosmology with the SPHEREX All-Sky spectral survey. arXiv:1412.4872

  128. O. Doré et al., Science impacts of the SPHEREx all-sky optical to near-infrared spectral survey II: report of a community workshop on the scientific synergies between the SPHEREx survey and other astronomy observatories. arXiv:1805.05489

  129. CMB-S4, Collaboration, K.N. Abazajian et al., CMB-S4 Science Book 1st edn. arXiv:1610.02743

  130. CMB-S4, Collaboration, K. Abazajian et al., CMB-S4: forecasting constraints on primordial gravitational waves. arXiv:2008.12619

  131. Simons Observatory, Collaboration, P. Ade et al., The simons observatory: science goals and forecasts. JCAP 02, 056 (2019). arXiv:1808.07445

  132. N. Sehgal et al., CMB-HD: an ultra-deep, high-resolution millimeter-wave survey over half the sky. arXiv:1906.10134

  133. N. Sehgal et al., CMB-HD: Astro2020 RFI response. arXiv:2002.12714

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashar Akrami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akrami, Y., Martinelli, M. (2021). Phenomenological Tests of Gravity on Cosmological Scales. In: Saridakis, E.N., et al. Modified Gravity and Cosmology. Springer, Cham. https://doi.org/10.1007/978-3-030-83715-0_29

Download citation

Publish with us

Policies and ethics