Skip to main content

The Role of Plant-Mediated Biosynthesised Nanoparticles in Agriculture

  • Chapter
  • First Online:
Sustainable Agriculture

Abstract

Different types of nanomaterials and different strategies could be used in the betterment of the overstressed agriculture. We have tried to focus on the different characterisation techniques involved in nanomaterial synthesis like UV-Vis spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). Further, the limitations of physical and chemical methods have also been discussed. We have talked about the organic strategies in detail, like microorganisms and plant-intervened biosynthesis of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alghuthaymi, M. A., Almoammar, H., Rai, M., Said-Galiev, E., & Abd-Elsalam, K. A. (2015). Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnology & Biotechnological Equipment, 29(2), 221–236.

    Google Scholar 

  • Aljabali, A. A. A., Akkam, Y., Al Zoubi, M. S., Al-Batayneh, K. M., Al-Trad, B., Abo Alrob, O., … Evans, D. J. (2018 March). Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials, 8(3), 174. https://doi.org/10.3390/nano8030174

    Article  CAS  Google Scholar 

  • Anu, K., Singaravelu, G., Murugan, K., & Benelli, G. (2017 January 1). Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum): Biophysical characterisation and cytotoxicity on vero cells. Journal of Cluster Science, 28(1), 551–563. https://doi.org/10.1007/s10876-016-1123-7

    Article  CAS  Google Scholar 

  • Banerjee, P., Satapathy, M., Mukhopahayay, A., & Das, P. (2014 December 1). Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: Synthesis, characterisation, antimicrobial property and toxicity analysis. Bioresources and Bioprocessing, 1(1), 3. https://doi.org/10.1186/s40643-014-0003-y

    Article  Google Scholar 

  • Barrena, R., Casals, E., Colón, J., Font, X., Sánchez, A., & Puntes, V. (2009). Evaluation of the ecotoxicity of model nanoparticles. Chemosphere, 75(7), 850–857. https://doi.org/10.1016/j.chemosphere.2009.01.078

    Article  CAS  Google Scholar 

  • Biswal, S. K., Nayak, A. K., Parida, U. K., & Nayak, P. L. (2012). Applications of nanotechnology in agriculture and food sciences. IJSID, 2(1), 21–36.

    Google Scholar 

  • Brock, D. A., Douglas, T. E., Queller, D. C., & Strassmann, J. E. (2011). Primitive agriculture in a social amoeba. Nature, 469(7330), 393–396. https://doi.org/10.1038/nature09668

    Article  CAS  Google Scholar 

  • Busó-Rogero, C., Brimaud, S., Solla-Gullon, J., Vidal-Iglesias, F. J., Herrero, E., Behm, R. J., & Feliu, J. M. (2016 February 15). Ethanol oxidation on shape-controlled platinum nanoparticles at different pHs: A combined in situ IR spectroscopy and online mass spectrometry study. Journal of Electroanalytical Chemistry, 763, 116–124. https://doi.org/10.1016/j.jelechem.2015.12.034

    Article  CAS  Google Scholar 

  • Chakravorty, A., Rather, G. A., Ali, A., Bhat, B. A., Sana, S. S., Abhishek, N., & Nanda, A. (2020). Nano approach: Indian spices as antimicrobial agents. In Advances in medical diagnosis, treatment, and care (pp. 205–241). IGI Global. https://doi.org/10.4018/978-1-7998-2524-1.ch016

    Chapter  Google Scholar 

  • Costa Silva, L. P., Oliveira, J. P., Keijok, W. J., da Silva, A. R., Aguiar, A. R., Guimarães, M. C. C., … Braga, F. R. (2017). Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans. International Journal of Nanomedicine, 12, 6373–6381. https://doi.org/10.2147/IJN.S137703

    Article  Google Scholar 

  • Dauthal, P., & Mukhopadhyay, M. (2016 September 14). Noble metal nanoparticles: Plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Industrial and Engineering Chemistry Research, 55(36), 9557–9577. https://doi.org/10.1021/acs.iecr.6b00861

    Article  CAS  Google Scholar 

  • Deepa, B., & Ganesan, V. (2015). Bioinspiredsynthesis of selenium nanoparticles using flowers of Catharanthus roseus (L.) G. Don. And Peltophorum pterocarpum (DC.) backer ex Heyne–a comparison. Int. J. Chem. Technol. Res., 7, 725–733.

    Google Scholar 

  • DeRosa, M. C., Monreal, C., Schnitzer, M., Walsh, R., & Sultan, Y. (2010). Nanotechnology in fertilisers. Nature Nanotechnology, 5(2), 91–91. https://doi.org/10.1038/nnano.2010.2

    Article  CAS  Google Scholar 

  • Dhand, C., Dwivedi, N., Loh, X. J., Jie Ying, A. N., Verma, N. K., Beuerman, R. W., … Ramakrishna, S. (2015). Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. RSC Advances, 5(127), 105003–105037. https://doi.org/10.1039/C5RA19388E. PubMed: 105003

    Article  CAS  Google Scholar 

  • Dhoke, S. K., Mahajan, P., Kamble, R., & Khanna, A. (2013). Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnology Development, 3(1). https://doi.org/10.4081/nd.2013.e1

  • Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangón, E., Britt, D. W., Johnson, W. P., … Anderson, A. J. (2012). CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14(9), 1–15. https://doi.org/10.1007/s11051-012-1125-9

    Article  CAS  Google Scholar 

  • Ditta, A. (2012). How helpful is nanotechnology in agriculture? Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(3). https://doi.org/10.1088/2043-6262/3/3/033002. PubMed: 033002.

  • Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017 September 1). Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports, 15, 11–23. https://doi.org/10.1016/j.btre.2017.03.002

    Article  Google Scholar 

  • Dwivedi, S., Saquib, Q., Al-Khedhairy, A. A., & Musarrat, J. (2016). Understanding the role of nanomaterials in agriculture. In D. P. Singh, H. B. Singh, & R. Prabha (Eds.), Microbial inoculants in sustainable agricultural productivity (pp. 271–288). Springer.

    Chapter  Google Scholar 

  • Egorova, E. M., & Revina, A. A. (2000 July 31). Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 168(1), 87–96. https://doi.org/10.1016/S0927-7757(99)00513-0

    Article  CAS  Google Scholar 

  • Fardsadegh, B., & Jafarizadeh-Malmiri, H. (2019). Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Processing and Synthesis, 8(1), 399–407.

    Google Scholar 

  • Frewer, L. J., Norde, W., Fischer, A. R. H., & Kampers, F. W. H. (2011). Nanotechnology in the Agri-food sector: Implications for the future. Wiley-VCH Press.

    Book  Google Scholar 

  • Grasso, G., Zane, D., & Dragone, R. (2019 January). Microbial nanotechnology: Challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials, 10(1), 11. https://doi.org/10.3390/nano10010011

    Article  CAS  Google Scholar 

  • Gruere, G., Narrod, C., & Abbott, L. (2011). Agriculture, food, and water nanotechnologies for the poor: Opportunities and constraints. Policy brief 19. International Food Policy Research Institute.

    Google Scholar 

  • Guilger-Casagrande, M., & de Lima, R. (2019). Synthesis of silver nanoparticles mediated by fungi: A review. Frontiers in Bioengineering and Biotechnology, 7, 287. https://doi.org/10.3389/fbioe.2019.00287

    Article  Google Scholar 

  • Gupta, M., Tomar, R. S., Kaushik, S., Mishra, R. K., & Sharma, D. (2018 September 3). Effective antimicrobial activity of green ZnO Nano particles of Catharanthus roseus. Frontiers in Microbiology, 9, 2030. https://doi.org/10.3389/fmicb.2018.02030

    Article  Google Scholar 

  • Happy, A., Soumya, M., Kumar, S. V., Rajeshkumar, S., Sheba, R. D., Lakshmi, T., & Nallaswamy, V. D. (2019). Phyto-assisted synthesis of zinc oxide nanoparticles using Cassia alata and its antibacterial activity against Escherichia coli. Biochemistry and Biophysics Reports, 17, 208–211.

    Google Scholar 

  • Herlekar, M., Barve, S., & Kumar, R. (2014). Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticles, 2014, 1–9. https://doi.org/10.1155/2014/140614

    Article  CAS  Google Scholar 

  • Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., & Yang, P. (2005). Effect of Nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research, 105(1–3), 269–279. https://doi.org/10.1385/BTER:105:1-3:269

    Article  CAS  Google Scholar 

  • Hulkoti, N. I., & Taranath, T. C. (2014 September 1). Biosynthesis of nanoparticles using microbes—A review. Colloids and Surfaces B, Biointerfaces, 121, 474–483. https://doi.org/10.1016/j.colsurfb.2014.05.027

    Article  CAS  Google Scholar 

  • Ibrahim, H. M. M., & Hassan, M. S. (2016 October 20). Characterization and antimicrobial properties of cotton fabric loaded with green synthesised silver nanoparticles. Carbohydrate Polymers, 151, 841–850. https://doi.org/10.1016/j.carbpol.2016.05.041

    Article  CAS  Google Scholar 

  • Jaison, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology.

    Google Scholar 

  • Jayarambabu, N., Kumari, B. S., Rao, K. V., & Prabhu, Y. T. (2014). Germination and growth characteristics of mungbean seeds (Vigna radiata L.) affected by synthesised zinc oxide nanoparticles. International Journal of Current Engineering and Technology, 5161(4(5)), 2347.

    Google Scholar 

  • Juhel, G., Batisse, E., Hugues, Q., Daly, D., van Pelt, F. N., O’Halloran, J., & Jansen, M. A. (2011). Alumina nanoparticles enhance growth of Lemna minor. Aquatic Toxicology, 105(3–4), 328–336. https://doi.org/10.1016/j.aquatox.2011.06.019

    Article  CAS  Google Scholar 

  • Kaur, P., Jain, P., Kumar, A., & Thakur, R. (2014 June 1). Biogenesis of PbS nanocrystals by using rhizosphere fungus ie, Aspergillus sp. isolated from the rhizosphere of chickpea. BioNanoScience, 4(2), 189–194. https://doi.org/10.1007/s12668-014-0135-8

    Article  Google Scholar 

  • Khandel, P., Yadaw, R. K., Soni, D. K., Kanwar, L., & Shahi, S. K. (2018). Biogenesis of metal nanoparticles and their pharmacological applications: Present status and application prospects. Journal of Nanostructure in Chemistry, 8(3), 217–254. https://doi.org/10.1007/s40097-018-0267-4

    Article  CAS  Google Scholar 

  • Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., & Biris, A. S. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3(10), 3221–3227. https://doi.org/10.1021/nn900887m

    Article  CAS  Google Scholar 

  • Khodakovskaya, M. V., Kim, B. S., Kim, J. N., Alimohammadi, M., Dervishi, E., Mustafa, T., & Cernigla, C. E. (2013). Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small, 9(1), 115–123. https://doi.org/10.1002/smll.201201225

    Article  CAS  Google Scholar 

  • Kirupagaran, R., Saritha, A., & Bhuvaneswari, S. (2016 December 31). Green synthesis of selenium nanoparticles from leaf and stem extract of leucas lavandulifolia sm. And their application. NanoScience and Technology, 224–226.

    Google Scholar 

  • Krupa, N. D., Grace, A. N., & Raghavan, V. (2019 February 13). Process optimisation for green synthesis of ZnO nanoparticles and evaluation of its antimacrofouling activity. IET Nanobiotechnology, 13(5), 510–514. https://doi.org/10.1049/iet-nbt.2018.5396

    Article  Google Scholar 

  • Kumar, V., Guleria, P., Kumar, V., & Yadav, S. K. (2013). Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Science of the Total Environment, 461–462, 462–468. https://doi.org/10.1016/j.scitotenv.2013.05.018

    Article  CAS  Google Scholar 

  • Kumar, N., & Kumbhat, S. (2016). Essentials in nanoscience and nanotechnology (pp. 189–236). John Wiley & Sons,. Nanomaterials, C.-B.

    Book  Google Scholar 

  • Kumar, D. A., Palanichamy, V., & Roopan, S. M. (2014 June 5). Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 127, 168–171. https://doi.org/10.1016/j.saa.2014.02.058

    Article  CAS  Google Scholar 

  • Kuzma, J. (2006). Moving forward responsibly: Oversight for the nanotechnology-biology interface. Journal of Nanoparticle Research, 9(1), 165–182. https://doi.org/10.1007/s11051-006-9151-0

    Article  Google Scholar 

  • Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution, 150(2), 243–250. https://doi.org/10.1016/j.envpol.2007.01.016

    Article  CAS  Google Scholar 

  • López-Moreno, M. L., De La Rosa, G., Hernández-Viezcas, J. A., Castillo-Michel, H., Botez, C. E., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2010). Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science and Technology, 44(19), 7315–7320. https://doi.org/10.1021/es903891g

    Article  CAS  Google Scholar 

  • Ma, C., Chhikara, S., Xing, B., Musante, C., White, J. C., & Dhankher, O. P. (2013). Physiological andmolecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustainable Chemistry and Engineering, 1(7), 768–778. https://doi.org/10.1021/sc400098h

    Article  CAS  Google Scholar 

  • Mahmoodzadeh, H., Nabavi, M., & Kashefi, H. (2013). Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). Journal of Ornamental Horticulture Plants, 3, 25–32.

    Google Scholar 

  • Majeed, S., Danish, M., Ibrahim, M. N., Sekeri, S. H., Ansari, M. T., Nanda, A., & Ahmad, G. (2020 September 4). Bacteria mediated synthesis of iron oxide nanoparticles and their antibacterial, antioxidant, cytocompatibility properties. Journal of Cluster Science, 1–2.

    Google Scholar 

  • Maysinger, D. (2007). Nanoparticles and cells: Good companions and doomed partnerships. Organic and Biomolecular Chemistry, 5(15), 2335–2342. https://doi.org/10.1039/b704275b

    Article  CAS  Google Scholar 

  • Morla, S., Ramachandra Rao, C. S. V., & Chakrapani, R. (2011). Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions, J Chem bio. Physiological Sciences, B1, 328–334.

    Google Scholar 

  • Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. K. (2018). Characterisation techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10(27), 12871–12934. https://doi.org/10.1039/c8nr02278j

    Article  CAS  Google Scholar 

  • Mukhopadhyay, S. S. (2014). Nanotechnology in agriculture prospects and constraints. Nanotechnology, Science and Applications, 7, 63–71. https://doi.org/10.2147/NSA.S39409

    Article  Google Scholar 

  • Nadaroglu, H., Güngör, A. A., & Selvi, Ä°. N. (2017 August). Synthesis of nanoparticles by green synthesis method. International Journal of Innovative Research and Reviews, 1(1), 6–9.

    Google Scholar 

  • Nakkala, J. R., Mata, R., Gupta, A. K., & Sadras, S. R. (2014 October 6). Biological activities of green silver nanoparticles synthesised with Acorous calamus rhizome extract. European Journal of Medicinal Chemistry, 85, 784–794. https://doi.org/10.1016/j.ejmech.2014.08.024

    Article  CAS  Google Scholar 

  • Naveed Ul Haq, A., Nadhman, A., Ullah, I., Mustafa, G., Yasinzai, M., & Khan, I. (2017 April 18). Synthesis approaches of zinc oxide nanoparticles: The dilemma of ecotoxicity. Journal of Nanomaterials, 2017, 1–14. https://doi.org/10.1155/2017/8510342

    Article  CAS  Google Scholar 

  • Nayantara, P., & Kaur, P. (2018 January 1). Biosynthesis of nanoparticles using eco-friendly factories and their role in plant pathogenicity: A review. Biotechnology Research and Innovation, 2(1), 63–73. https://doi.org/10.1016/j.biori.2018.09.003

    Article  Google Scholar 

  • Nuruzzaman, M., Rahman, M. M., Liu, Y. J., & Naidu, R. (2016). Nanoencapsulation, nano-guard for pesticides: A new window for safe application. Journal of Agricultural and Food Chemistry, 64(7), 1447–1483. https://doi.org/10.1021/acs.jafc.5b05214

    Article  CAS  Google Scholar 

  • Ovais, M., Khalil, A. T., Ayaz, M., Ahmad, I., Nethi, S. K., & Mukherjee, S. (2018 December). Biosynthesis of metal nanoparticles via microbial enzymes: A mechanistic approach. International Journal of Molecular Sciences, 19(12), 4100. https://doi.org/10.3390/ijms19124100

    Article  Google Scholar 

  • Pantidos, N., & Horsfall, L. E. (2014 September 1). Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Journal of Nanomedicine and Nanotechnology, 5(5), 1.

    Article  Google Scholar 

  • Patil, C. D., Borase, H. P., Suryawanshi, R. K., & Patil, S. V. (2016). Trypsin inactivation by latex fabricated gold nanoparticles: A new strategy towards insect control. Enzyme and Microbial Technology, 92, 18–25. https://doi.org/10.1016/j.enzmictec.2016.06.005

    Article  CAS  Google Scholar 

  • Paul, A. M., Sajeev, A., Nivetha, R., Gothandapani, K., Bhardwaj, P., K, G., … Grace, A. N. (2020 April 28). Cuprous oxide (Cu2O)/graphitic carbon nitride (g-C3N4) nanocomposites for electrocatalytic hydrogen evolution reaction. Diamond and Related Materials, 107. https://doi.org/10.1016/j.diamond.2020.107899, PubMed: 107899.

  • Perez-de-Luque, A., & Hermosín, M. C. (2013). Nanotechnology and its use in agriculture. In D. Bagchi, M. Bagchi, H. Moriyama, & F. Shahidi (Eds.), Bio-nanotechnology: A revolution in food, Bomedical and health sciences (pp. 299–405). Wiley-Blackwell, West.

    Google Scholar 

  • Petosa, A. R., Rajput, F., Selvam, O., Öhl, C., & Tufenkji, N. (2017). Assessing the transport potential of polymeric nanocapsules developed for crop protection. Water Research, 111, 10–17.

    Google Scholar 

  • Prasad, R., Kumar, V., & Prasad, K. S. (2014). Nanotechnology in sustainable agriculture: Present concerns and future aspects. African Journal of Biotechnology, 6, 13705–13713.

    Google Scholar 

  • Prasad, T. N. V. K. V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K. R., … Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35(6), 905–927. https://doi.org/10.1080/01904167.2012.663443

    Article  CAS  Google Scholar 

  • Qamar, Z., Nasir, I. A., & Husnain, T. (2014). In-vitro development of cauliflower synthetic seeds and conversion to plantlets. Advances in Life Sciences, 1(2), 34–41.

    Google Scholar 

  • Raghavan, V., Deb, A., & Grace, A. N. (2020 June 19). Honokiol-camptothecin loaded graphene oxide nanoparticle towards combinatorial anticancer drug delivery. IET Nanobiotechnology.

    Google Scholar 

  • Rai, M., & Ingle, A. (2012a). Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 94(2), 287–293. https://doi.org/10.1007/s00253-012-3969-4

    Article  CAS  Google Scholar 

  • Rai, M., & Ingle, A. (2012b). Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 94(2), 287–293. https://doi.org/10.1007/s00253-012-3969-4

    Article  CAS  Google Scholar 

  • Rai, P., Kwak, W. K., & Yu, Y. T. (2013 April 24). Solvothermal synthesis of ZnO nanostructures and their morphology-dependent gas-sensing properties. ACS Applied Materials and Interfaces, 5(8), 3026–3032. https://doi.org/10.1021/am302811h

    Article  CAS  Google Scholar 

  • Rajasekaran, S. J., & Raghavan, V. (2020 November 1). Facile synthesis of activated carbon derived from Eucalyptus globulus seed as efficient electrode material for supercapacitors. Diamond and Related Materials, 109. https://doi.org/10.1016/j.diamond.2020.108038. PubMed: 108038.

  • Sasidharan, S., Sowmiya, R., & Balakrishnaraja, R. (2014). Biosynthesis of selenium nanoparticles using citrus reticulata peel extract. World Journal of Pharmaceutical Research, 4, 1322–1330.

    Google Scholar 

  • Scott, N. R. (2007). Nanoscience in veterinary medicine. Veterinary Research Communications, 31(Suppl. 1), 139–144. https://doi.org/10.1007/s11259-007-0083-7

    Article  Google Scholar 

  • Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. (2015 November). Green synthesis of metallic nanoparticles via biological entities. Materials, 8(11), 7278–7308. https://doi.org/10.3390/ma8115377

    Article  CAS  Google Scholar 

  • Sharmila, G., Muthukumaran, C., Sandiya, K., Santhiya, S., Pradeep, R. S., Kumar, N. M., … Thirumarimurugan, M. (2018 September 1). Biosynthesis, characterisation, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract. Journal of Nanostructure in Chemistry, 8(3), 293–299. https://doi.org/10.1007/s40097-018-0271-8

    Article  CAS  Google Scholar 

  • Sheykhbaglou, R., Sedghi, M., Shishevan, M. T., & Sharifi, R. S. (2010). Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Scientia Biologicae, 2(2), 112–113. https://doi.org/10.15835/nsb224667

    Article  Google Scholar 

  • Singh, H., Du, J., Singh, P., & Yi, T. H. (2018 August 18). Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artificial Cells, Nanomedicine, and Biotechnology, 46(6), 1163–1170. https://doi.org/10.1080/21691401.2017.1362417

    Article  CAS  Google Scholar 

  • Sitaaraman, S. R., Santhosh, R., Kollu, P., Jeong, S. K., Sellappan, R., Raghavan, V., … Grace, A. N. (2020 October 1). Role of graphene in NiSe2/graphene composites-Synthesis and testing for electrochemical supercapacitors. Diamond and Related Materials, 108. PubMed: 107983.

    Google Scholar 

  • Sonkaria, S., Ahn, S. H., & Khare, V. (2012). Nanotechnology and its impact on food and nutrition: A review. Recent Patents on Food, Nutrition and Agriculture, 4(1), 8–18. https://doi.org/10.2174/2212798411204010008

    Article  CAS  Google Scholar 

  • Srinath, B. S., & Ravishankar Rai, V. R. (2015 October 1). Biosynthesis of highly monodispersed, spherical gold nanoparticles of size 4–10 nm from spent cultures of Klebsiella pneumoniae. 3 Biotech, 5(5), 671–676. https://doi.org/10.1007/s13205-014-0265-2

    Article  CAS  Google Scholar 

  • Syamsai, R., & Grace, A. N. (2020 March 1). Synthesis, properties and performance evaluation of vanadium carbide MXene as supercapacitor electrodes. Ceramics International, 46(4), 5323–5330. https://doi.org/10.1016/j.ceramint.2019.10.283

    Article  CAS  Google Scholar 

  • Vanathi, P., Rajiv, P., & Sivaraj, R. (2016). Synthesis and characterisation of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens. Bulletin of Materials Science, 39(5), 1165–1170. https://doi.org/10.1007/s12034-016-1276-x

    Article  CAS  Google Scholar 

  • Velappan, S., Nivedhita, P., Vimala, R., & Raja, S. (2020 November 1). Role of Nano titania on the thermomechanical properties of silicon carbide refractories. Ceramics International, 46(16), 25921–25926. https://doi.org/10.1016/j.ceramint.2020.07.077

    Article  CAS  Google Scholar 

  • Vijayan, R., Joseph, S., & Mathew, B. (2018 May 19). Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artificial Cells, Nanomedicine, and Biotechnology, 46(4), 861–871. https://doi.org/10.1080/21691401.2017.1345930

    Article  CAS  Google Scholar 

  • Ward, M. B., Brydson, R., & Cochrane, R. F. (2006) (Vol. 26, No. 1, p. 296). Mn nanoparticles produced by inert gas condensation. In Journal of Physics: Conference Series. IOP Publishing, 296–299. https://doi.org/10.1088/1742-6596/26/1/071.

  • Wheeler, S. (2005). Factors influencing agricultural professionals’ attitudes toward organic agriculture and biotechnology. Center for Regulation and market analysis. University of South Australia.

    Google Scholar 

  • Yadav, B. C., Srivastava, R., & Yadav, A. (2009 January 1). Nanostructured zinc oxide synthesised via hydroxide route as liquid petroleum gas sensor. Sensors and Materials, 21, 87–94.

    CAS  Google Scholar 

  • Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C., & Yang, P. (2006). Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research, 110(2), 179–190. https://doi.org/10.1385/bter:110:2:179

    Article  CAS  Google Scholar 

  • Yang, F., Liu, C., Gao, F., Su, M., Wu, X., Zheng, L., … Yang, P. (2007). The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biological Trace Element Research, 119(1), 77–88. https://doi.org/10.1007/s12011-007-0046-4

    Article  CAS  Google Scholar 

  • Zeebaree, S. Y. S., Zeebaree, A. Y. S., & Zebari, O. I. H. (2020 March 1). Diagnosis of the multiple effect of selenium nanoparticles decorated by Asteriscus graveolens components in inhibiting HepG2 cell proliferation. Sustainable Chemistry and Pharmacy, 15. https://doi.org/10.1016/j.scp.2019.100210. PubMed: 100210.

  • Zhang, K., Lv, S., Lin, Z., Li, M., & Tang, D. (2018 March 15). Bio-bar-code-based photo electrochemical immunoassay for sensitive detection of prostate-specific antigen using rolling circle amplification and enzymatic biocatalytic precipitation. Biosensors and Bioelectronics, 101, 159–166. https://doi.org/10.1016/j.bios.2017.10.031

    Article  CAS  Google Scholar 

  • Zheng, L., Hong, F., Lu, S., & Liu, C. (2005 April 1). Effect of Nano-TiO 2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104(1), 83–92. https://doi.org/10.1385/BTER:104:1:083

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nazneen, H., Rather, G.A., Ali, A., Chakravorty, A. (2022). The Role of Plant-Mediated Biosynthesised Nanoparticles in Agriculture. In: Bandh, S.A. (eds) Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-83066-3_6

Download citation

Publish with us

Policies and ethics