Skip to main content

Graphitic Carbon Nitride with Extraordinary Photocatalytic Activity Under Visible Light Irradiation

  • Conference paper
  • First Online:
Advances of Science and Technology (ICAST 2020)

Abstract

Catalytic activities of graphitic carbon nitride (g-C3N4) are restricted thanks to inadequate visible light absorption and high rate electron–hole recombination. In this work, we synthesized porous g-C3N4 using polycondensation process. Structural and physico-chemical characteristics of the prepared g-C3N4 materials were studied via XRD, DRS, PL, FTIR, Raman spectroscopy, SEM, BET and CHN elemental analyzer. The prepared samples exhibited surprising catalytic activity for the photo-oxidation of rhodamine-B (RhB) in visible light irradiation. From the fabricated g-C3N4 materials, the g-C3N4-550 showed photodegradation efficiency of 100% towards the RhB pollutant in water within 30 min. No appreciable decrease of the photocatalytic efficiency of g-C3N4 was observed up to five consecutive cycles, confirming the synthesized g-C3N4 was highly stable. Thus, this work gave a simple process for large scale production of highly visible light responsive and stable g-C3N4 materials used for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, Y., Xu, H., Wang, L., et al.: The CNT modified white C3N4 composite photocatalyst with enhanced visible-light response photoactivity. Dalt. Trans. 42, 7604–7613 (2013)

    Article  Google Scholar 

  2. Gebreslassie, G., Bharali, P., Chandra, U., et al.: Hydrothermal synthesis of g-C3N4/NiFe2O4 nanocomposite and its enhanced photocatalytic activity. Appl. Organomet. Chem. 33, e5002 (2019). https://doi.org/10.1002/aoc.5002

    Article  Google Scholar 

  3. Wajid Shah, M., Zhu, Y., Fan, X., et al.: Facile synthesis of defective TiO2−x nanocrystals with high surface area and tailoring bandgap for visible-light photocatalysis. Sci. Rep. 5, 15804 (2015)

    Article  Google Scholar 

  4. Saputra, E., Muhammad, S., Sun, H., et al.: A comparative study of spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions. J. Colloid. Interface Sci. 407, 467–473 (2013)

    Article  Google Scholar 

  5. Niu, P., Zhang, L., Liu, G., Cheng, H.M.: Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22, 4763–4770 (2012)

    Article  Google Scholar 

  6. Wang, A., Wang, C., Fu, L., Wong-Ng, W., Lan, Y.: Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 9(4), 1–21 (2017). https://doi.org/10.1007/s40820-017-0148-2

    Article  Google Scholar 

  7. Zheng, Y., Lin, L., Wang, B., Wang, X.: Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew Chemie – Int. Ed. 54, 12868–12884 (2015)

    Article  Google Scholar 

  8. Sun, H., Zhou, G., Wang, Y., et al.: A new metal-free carbon hybrid for enhanced photocatalysis. ACS Appl. Mater. Interfaces 6, 16745–16754 (2014)

    Article  Google Scholar 

  9. Guo, F., Shi, W., Li, M., et al.: 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline. Sep. Purif. Technol. 210, 608–615 (2019)

    Article  Google Scholar 

  10. Liu, J., Wang, H., Antonietti, M.: Graphitic carbon nitride “reloaded”: emerging applications beyond (photo)catalysis. Chem. Soc. Rev. 45, 2308–2326 (2016)

    Article  Google Scholar 

  11. Xue, J., Ma, S., Zhou, Y., Wang, Q.: Au-loaded porous graphitic C3N4/graphene layered composite as a ternary plasmonic photocatalyst and its visible-light photocatalytic performance. RSC Adv. 5, 88249–88257 (2015)

    Article  Google Scholar 

  12. Zhao, Z., Sun, Y., Dong, F.: Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7, 15–37 (2015)

    Article  Google Scholar 

  13. Gebreslassie, G., Bharali, P., Chandra, U., et al.: Novel g-C3N4/graphene/NiFe2O4 nanocomposites as magnetically separable visible light driven photocatalysts. J. Photochem. Photobiol. A Chem. 382 (2019)

    Google Scholar 

  14. Dong, F., Wu, L., Sun, Y., et al.: Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem. 21, 15171–15174 (2011)

    Article  Google Scholar 

  15. Cao, S., Low, J., Yu, J., Jaroniec, M.: Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150–2176 (2015)

    Article  Google Scholar 

  16. Lee, S.C., Lintang, H.O., Yuliati, L.: A urea precursor to synthesize carbon nitride with mesoporosity for enhanced activity in the photocatalytic removal of phenol. Chem. - Asian J. 7, 2139–2144 (2012)

    Article  Google Scholar 

  17. Fang, H., Luo, Y., Zheng, Y., et al.: Facile large-scale synthesis of urea-derived porous graphitic carbon nitride with extraordinary visible-light spectrum photodegradation. Ind. Eng. Chem. Res. 55, 4506–4514 (2016)

    Article  Google Scholar 

  18. Shi, L., Liang, L., Wang, F., et al.: Higher yield urea-derived polymeric graphitic carbon nitride with mesoporous structure and superior visible-light-responsive activity. ACS Sustain. Chem. Eng. 3, 3412–3419 (2015)

    Article  Google Scholar 

  19. Zhang, Y., Liu, J., Wu, G., Chen, W.: Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 4, 5300–5303 (2012)

    Article  Google Scholar 

  20. Ong, W.J., Tan, L.L., Ng, Y.H., et al.: Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016)

    Article  Google Scholar 

  21. Liu, J., Zhang, T., Wang, Z., et al.: Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 21, 14398–14401 (2011)

    Article  Google Scholar 

  22. Praus, P., Svoboda, L., Ritz, M., et al.: Graphitic carbon nitride: synthesis, characterization and photocatalytic decomposition of nitrous oxide. Mater. Chem. Phys. 193, 438–446 (2017)

    Article  Google Scholar 

  23. Pawar, R.C., Kang, S., Park, J.H., et al.: Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability. Sci. Rep. 6, 1–14 (2016)

    Article  Google Scholar 

  24. Shi, Y., Huang, J., Zeng, G., et al.: Stable, metal-free, visible-light-driven photocatalyst for efficient removal of pollutants: mechanism of action. J. Colloid. Interface Sci. 531, 433–443 (2018)

    Article  Google Scholar 

  25. Marchewka, M.K.: Infrared and Raman spectra of melaminium chloride hemihydrate. Mater. Sci. Eng. B 95, 214–221 (2002)

    Article  Google Scholar 

  26. Papailias, I., Giannakopoulou, T., Todorova, N., et al.: Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl. Surf. Sci. 358, 278–286 (2015)

    Article  Google Scholar 

  27. Yan, S.C., Li, Z.S., Zou, Z.G.: Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25, 10397–10401 (2009)

    Article  Google Scholar 

  28. Nagaraja, R., Kottam, N., Girija, C.R., Nagabhushana, B.M.: Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route. Powder Technol. 215–216, 91–97 (2012)

    Article  Google Scholar 

  29. Li, Y., Zhang, H., Liu, P., et al.: Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small 9, 3336–3344 (2013)

    Google Scholar 

  30. Ye, L., Liu, J., Jiang, Z., et al.: Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl. Catal. B, Environ. 142–143, 1–7 (2013)

    Google Scholar 

  31. Mousavi, M., Habibi-Yangjeh, A., Seifzadeh, D., et al.: Exceptional photocatalytic activity for g-C3N4 activated by H2O2 and integrated with Bi2S3 and Fe3O4 nanoparticles for removal of organic and inorganic pollutants. Adv. Powder Technol. 30, 524–537 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gebrehiwot Gebreslassie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gebreslassie, G., Bharali, P., Gebremariam, G., Sergawie, A., Alemayehu, E. (2021). Graphitic Carbon Nitride with Extraordinary Photocatalytic Activity Under Visible Light Irradiation. In: Delele, M.A., Bitew, M.A., Beyene, A.A., Fanta, S.W., Ali, A.N. (eds) Advances of Science and Technology. ICAST 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 385. Springer, Cham. https://doi.org/10.1007/978-3-030-80618-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80618-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80617-0

  • Online ISBN: 978-3-030-80618-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics