Skip to main content

Improvements on Signal Processing Algorithm for the VOPITB Equipment

  • Conference paper
  • First Online:
Technological Innovation for Applied AI Systems (DoCEIS 2021)

Abstract

The pulse signal obtained non-invasively through an oscillometric method can accurately measure the Cardio-Ankle Vascular Index (CAVI) and Pulse Wave Velocity (PWV), two valuable physiological markers of arterial stiffness and cardiovascular health. The VOPITB device is designed to obtain these markers whose accuracy heavily depends on the correctness of feature extraction from pulse wave signals. Typically, a threshold method is obtained, leading to excessive detection success dependency on the established level. To overcome this limitation two signal processing methods are proposed, one based on a modified version of the Pan-Tompkins algorithm and the other centered on a Wavelet approach. A statistical study is presented assessing the accuracy of both methods. The new algorithms are presented as an alternative to the simple thresholding method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mensah, G.A., et al.: Decline in cardiovascular mortality. Circ. Res. 120(2), 366–380 (2017). https://doi.org/10.1161/CIRCRESAHA.116.309115

    Article  Google Scholar 

  2. WHO: The top 10 causes of death (2020). https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.

  3. Verwoert, G.C., et al.: Does aortic stiffness improve the prediction of coronary heart disease in elderly? The Rotterdam Study. J. Hum. Hypertens. 26(1), 28–34 (2012). https://doi.org/10.1038/jhh.2010.124

    Article  Google Scholar 

  4. Covic, A., Siriopol, D.: Pulse wave velocity ratio. Hypertension 65(2), 289–290 (2015). https://doi.org/10.1161/HYPERTENSIONAHA.114.04678

    Article  Google Scholar 

  5. Asmar, R.: Principles and usefulness of the cardio-ankle vascular index (CAVI): a new global arterial stiffness index. Eur. Heart J. Suppl. 19(suppl_B), B4–B10 (2017). https://doi.org/10.1093/eurheartj/suw058

  6. Rico Martín, S., et al.: La velocidad de onda de pulso de la pierna menos brazo medida con un dispositivo propio se correlaciona con la cuantificación de calcio coronario. Rev. Clínica Española (2016). https://doi.org/10.1016/j.rce.2016.01.006

  7. Sánchez Bacaicoa, C., et al.: Velocidad de onda de pulso brazo-tobillo con un dispositivo propio. Rev. Clínica Española (2020). https://doi.org/10.1016/j.rce.2019.12.012

  8. Rico Martín, S., et al.: Cardio-ankle vascular index (CAVI) measured by a new device: protocol for a validation study. BMJ Open 10(10), e038581 (2020). https://doi.org/10.1136/bmjopen-2020-038581

    Article  Google Scholar 

  9. Alastruey, J., Parker, K., Sherwin, S.J.: Arterial pulse wave haemodynamics. In: Anderson, S. (ed.) 11th International Conference on Pressure Surges (2012)

    Google Scholar 

  10. Jang, D.-G., Farooq, U., Park, S.-H., Hahn, M.: A robust method for pulse peak determination in a digital volume pulse waveform with a wandering baseline. IEEE Trans. Biomed. Circuits Syst. 8(5), 729–737 (2014). https://doi.org/10.1109/TBCAS.2013.2295102

    Article  Google Scholar 

  11. Vadrevu, S., Manikandan, M.S.: A robust pulse onset and peak detection method for automated PPG signal analysis system. IEEE Trans. Instrum. Meas. 68(3), 807–817 (2019). https://doi.org/10.1109/TIM.2018.2857878

    Article  Google Scholar 

  12. Argüello-Prada, E.J.: The mountaineer’s method for peak detection in photoplethysmographic signals. Rev. Fac. Ing. Univ. Antioquia (90), 42–50 (2019). https://doi.org/10.17533/udea.redin.n90a06

  13. Shirai, K., Saiki, A., Nagayama, D., Tatsuno, I., Shimizu, K., Takahashi, M.: The role of monitoring arterial stiffness with cardio-ankle vascular index in the control of lifestyle-related diseases. Pulse 3(2), 118–133 (2015). https://doi.org/10.1159/000431235

    Article  Google Scholar 

  14. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. BME-32(3), 230–236 (1985). https://doi.org/10.1109/TBME.1985.325532

    Article  Google Scholar 

  15. Pinto, I.V., Alves, L.B., Ortigueira, M.D., Batista, A.G.: ECG wave detector and delineation with wavelets, vol. 4 (2005). http://www2.uninova.pt/~mdo/publ_files/D93-ECGWAVEDETECTORANDDELINEATIONWITHWAVELETS.pdf

  16. Sedghamiz, H.: Matlab Implementation of Pan Tompkins ECG QRS, pp. 1–3 (2014). https://www.researchgate.net/publication/313673153_Matlab_Implementation_of_Pan_Tompkins_ECG_QRS_detector

  17. Sahambi, J.S., Tandon, S.N., Bhatt, R.K.P.: A new approach for on-line ECG characterization. In: Proceedings of the 1996 Fifteenth Southern Biomedical Engineering Conference, pp. 409–411. https://doi.org/10.1109/SBEC.1996.493262

Download references

Acknowledgments

This work was funded and supported by the Fundação para a Ciência e Tecnologia (FCT, Portugal) and NMT, S.A in the scope of the PhD grant PD/BDE/150312/2019. Partial support also comes from Fundação para a Ciência e Tecnologia through the program UIDB/00066/2020 (CTS- Center of Technology and Systems).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipa E. Cardoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cardoso, F.E. et al. (2021). Improvements on Signal Processing Algorithm for the VOPITB Equipment. In: Camarinha-Matos, L.M., Ferreira, P., Brito, G. (eds) Technological Innovation for Applied AI Systems. DoCEIS 2021. IFIP Advances in Information and Communication Technology, vol 626. Springer, Cham. https://doi.org/10.1007/978-3-030-78288-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78288-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78287-0

  • Online ISBN: 978-3-030-78288-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics