Skip to main content

Axiomatic Thinking in Physics—Essence or Useless Ornament?

  • Chapter
  • First Online:
Axiomatic Thinking II

Abstract

In the first part of this contribution, I will present aspects and attitudes towards “axiomatic thinking” in various branches of theoretical physics. In the second and more technical part, which is approximately of the same size, I will focus on mathematical results that are relevant for axiomatic schemes of space-time in connection with attempts to axiomatize Special and General Relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The German originals of all translated quotations will be given in the appendix.

  2. 2.

    A very readable biography of Hertz is by Fölsing [24].

  3. 3.

    In his book on mechanics, [72], which form the first volume of his famous six-volume lecture series on theoretical physics (“Vorlesungen über Theoretische Physik”) Arnold Sommerfeld mentions Heinrich Hertz’s book on Mechanics in connection with the idea to eliminate the notion of “force” with the following words: “Heinrich Hertz hat dieses Programm mit meisterhafter Konsequenz durchgeführt. Aber zu fruchtbaren Folgerungen ist seine Methode kaum gelangt; insbesondere für den Anfänger ist sie völlig ungeeignet”.

  4. 4.

    A biography of Carathéodory is that of Georgiadou [26].

  5. 5.

    More precisely, the assumptions are as follows: The set M of equilibrium states of a thermodynamical system is assumed to be a smooth manifold. The inner energy of the system is represented by a real-valued function U on M; it is a function of state. “Heat” is also a real-valued quantity, but in contrast to energy it is not associated to states, i.e. points in M, but rather to “quasi-static processes”, i.e. piecewise \(C^1\) curves in M. These are called “quasi-static” because the process is assumed to remain within M, i.e. to only proceed in a succession of equilibrium states, which means that the real-time process must be “sufficiently slow”. Hence, heat is represented by a one-form that we denote by \(\omega \). Another one-form is that of “reversible work”, which we denote by \(\alpha \). Typically one has \(\alpha =-p\,dV+\cdots \), where p stands for pressure and V for volume, both of which are functions of state. The first law of thermodynamics then says that \(dU=\omega +\alpha \). Now, a quasi-static process \(\gamma \) (piecewise \(C^1\) a curve in M) is called “adiabatic” if \(\omega (\dot{\gamma })=0\), i.e. if the heat associated to this process vanishes. Carathéodory’s principle of adiabatic inaccessibility then says that for any \(p\in M\) and any neighbourhood \(V_p\subset M\) of p there is a point \(q\in V_p\) such that no adiabatic process exists connecting p and q. If \(T_pM\) denotes the tangent space to M at \(p\in M\) and \(TM=\cup _{p\in M}T_pM\) its tangent bundle, we define the “kernel distribution” as the subbundle \(K_\omega :=\{v\in T(M): \omega (v)=0\}\subset T(M)\). It is clear that the principle of adiabatic inaccessibility holds if \(K_\omega \) is integrable: just choose for q a point in \(V_p\) that is not on the same integral submanifold (leaf) as p. The no-trivial mathematical result of Carathéodory [14] is the proof of the converse, that is, adiabatic inaccessibility is not sufficient but also necessary for \(K_\omega \) to be integrable. Integrability is equivalent to \(d\omega \vert _{K_\omega }=0\) or \(\omega \wedge d\omega =0\), as has been known from Frobenius [25] long before [14]. This implies the existence of a function T on M such that \(d(\omega /T)=0\) (T is a so-called integrating denominator). Hence, (locally) there is a function S on M such that \(\omega /T=dS\); this is how temperature T and entropy S emerge from the principle of adiabatic inaccessibility.

  6. 6.

    This Weyl extended in the third and fifth editions of 1921 and 1923.

  7. 7.

    Robb’s system in its final form is complex and takes more than 400 pages for its presentation and discussion Robb [70]. It contains 21 axioms which are based on the relations of “before” and “after” which can be reduced to that of lightlike connectability. It was later shown by Mundy [59] that this system is amenable to considerable simplification.

  8. 8.

    This concept was only spelled out 40 years after Carathéodory by Marzke and Wheeler [52] based on Marzke [51].

  9. 9.

    Weyl’s “Axiomatik” lecture has 40 paragraphs grouped into five chapters: chapter I (paragraphs 1–9) on “Geometrie”; chapter II (paragraphs 10–15) on “Die Raum-Zeit-Lehre der Speziellen Relativitätstheorie”; chapter III (paragraphs 16–25) on “Raum und Zahl”; chapter IV (paragraphs 26–36) on “Algebra”; chapter V (paragraphs 37–40) on “Topologie”.

  10. 10.

    See [16, 18] for the formal definition of a path structure and [28, 64] for the discussion of the law if inertia and its impact on space-time structure.

  11. 11.

    We recall that an affine space inherits a natural topology from its associated vector space. This is also the natural manifold topology it receives from the atlas of affine charts, i.e. it is the coarsest (in the sense of “fewest” open sets) topology in which all chart maps are continuous.

  12. 12.

    The set of timelike curves considered here includes nowhere differentiable ones; the notion of being timelike cannot in this case be defined by the tangent vector and has to be generalized.

  13. 13.

    [35] is a combination of Hilbert [33, 34] with various changes taking into account suggestions and criticism by Klein [39] and results of Noether [61], which also led to additional axioms.

  14. 14.

    Here we use the following terminology: An “autoparallel” is a curve \(\lambda \mapsto x(\lambda )\) that satisfies the differential equation \({\ddot{x}}^a+\Gamma ^a_{bc}{\dot{x}}^b{\dot{x}}^c=f(\lambda ){\dot{x}}^a\), where f remains unspecified. A “geodesic” is a curve that satisfies this differential equation for \(f\equiv 0\). Note that \(\Gamma ^a_{bc}\) are the components of the connection (the Christoffel symbols in Riemannian and semi-Riemannian geometry). Any autoparallel can be turned into a geodesic by reparametrization. This fixes the parameter \(\lambda \) up to affine transformations: \(\lambda \mapsto \lambda ':=a\lambda +b\), where \(a\in \mathbb {R}-\{0\}\) and \(b\in \mathbb {R}\). Sometimes people speak of “unparametrized geodesics” instead of “autoparallels”, but we shall not adopt this terminology here.

  15. 15.

    In General Relativity, a “clock” is usually defined as any device that is capable of measuring the proper length (or any preferred parameter affinely equivalent to that) of a timelike curve. This may be its own worldline (if it defines any) or that of another object. How this can be done—in principle—with light rays alone, thereby giving operational meaning to the concept of a “Lichtuhr” already mentioned by Hilbert [34, p. 54], has been explained by [52] based on [51].

  16. 16.

    This difficult-to-access paper was republished as “Golden Oldie” by Ehlers et al. [20].

  17. 17.

    A “Weyl structure” is equivalent to a “Weyl geometry” in Matveev and Scholz [53]’s terminology. The latter is defined by an equivalence class of pairs \((g,\varphi )\) with equivalence relation \((g,\varphi )\sim (g',\varphi ')\Leftrightarrow \) \(g'=\exp (\Omega )g\) and \(\varphi '=\varphi +d\Omega \). It is easy to see by the obvious generalization of the standard Koszul formula that for any given pair \((g,\varphi _g)\) there is a unique torsion-free \(\nabla \) satisfying (10.4).

  18. 18.

    The “first clock-effect” just means that initially synchronized clocks generally show different readings when connecting two timelike separated events by different worldlines. Geometrically this just refers to the trivial fact that the lengths of paths connecting two given points in space-time depend on the paths. The “second clock-effect” refers to the (mathematical) possibility that the ticking rates of the two clocks may also differ upon being brought together, depending on their pre-history. A general, non-integrable Weyl geometry allows for such second clock-effects.

  19. 19.

    Note that a Weyl structure\((M,\mathscr {C},\nabla )\) only includes a conformal equivalence class \(\mathscr {C}\) of semi-Riemannian metrics. This suffices to define timelike curves as those curves \(\gamma \) where \(g(\dot{\gamma },\dot{\gamma })<0\) for one—and hence any—representative \(g\in \mathscr {C}\), which also does not depend of the parametrization. But lengths of curves are not determined by \(\mathscr {C}\) so that the notion of a “clock” cannot be defined as before in footnote 15, namely, as a device measuring the proper lengths of timelike curves (or any of the affinely equivalent parameters). Instead, in Weylian space-times, a “clock” is defined, according to Perlick [63], by a device that allows to measure any of the preferred parameters within the affine equivalence class of curve parameters with respect to which the acceleration \(\ddot{\gamma }=\nabla _{\dot{\gamma }}\dot{\gamma }\) is \(\mathscr {C}\)-perpendicular to the direction of the curve, i.e. \(g(\ddot{\gamma },\dot{\gamma })=0\) for one—and hence any—\(g\in \mathscr {C}\).

  20. 20.

    There are various approaches, not all of which allow the notion of lightlike geodesics. A scheme in which this is possible has been introduced and used in [42]. See [41] for a review and references [58] for a discussion of conditions on Finsler metrics that lead to Lorentzian-like two-component lightcones.

  21. 21.

    The idea is simple: Take a Lagrange function (square of the “Finsler function”) \(L(x,\dot{x})=\exp \bigl (2\sigma (x,\dot{x})\bigr )\,g_{ab}(x){\dot{x}}^a{\dot{x}}^b\) with \(\sigma :TM\rightarrow \mathbb {R}\) any smooth function. This obviously leads to the same conformal structure. As shown by Matveev and Trautman [75], it has the same projective structure if \(\sigma \) satisfies \(\partial \sigma /\partial x^b-(\partial \sigma /\partial {\dot{x}}^a)\Gamma ^a_{bc}{\dot{x}}^c=0\), where \(\Gamma ^a_{bc}\) are the components of the Levi-Civita connection (Christoffel symbols) for g.

  22. 22.

    To prove that the \(C^2\) requirement is, in fact, sufficient, to deduce the Lorentzian nature of the geometry is one of the crucial steps in [19] which is not proven in detail. It relies on the classification of quadrics in projective 3-space (not stated by the authors) from which the further axiom \(L_2\) then picks out those containing the required two components of the set of lightlike directions.

  23. 23.

    This was just the central idea behind Paul Finsler’s generalization of Riemannian geometry that he developed in his 1918 thesis under the supervision of Carathéodory: to generalize the geodesic variational principle as much as possible while maintaining existence and uniqueness for the solutions of the resulting Euler-Lagrange equations [23].

  24. 24.

    In fact, after this paper was written, my attention was drawn to the very recent work of Bernal et al. [8] in which a far more detailed analysis of the compatibility of Finsler geometries with the EPS scheme was made. In particular, the authors also discuss the justification of the \(C^2\) assumption in axiom \(L_1\) in more detail as here and as by Lämmerzahl and Perlick [41] and also come to the conclusion that it may well be relaxed. I thank Christian Pfeifer for pointing out this reference to me.

References

  1. Alexander Danilovich Alexandrov. Mappings of spaces with families of cones and space-time transformations. Annali di Matematica Pura ed Applicata (Bologna), 103 (8): 229–257, 1975. URL https://doi.org/10.1007/BF02414157.

  2. Jürgen Audretsch. Riemannian structure of space-time as a consequence of quantum mechanics. Physical Review D, 27 (12): 2872–2884, 1983. URL https://doi.org/10.1103/PhysRevD.27.2872.

  3. Jürgen Audretsch and Claus Lämmerzahl. Establishing the Riemannian structure of space-time by means of light rays and free matter waves. Journal of Mathematical Physics, 32 (8): 2099–2105, 1991. URL https://doi.org/10.1063/1.529181.

  4. Jürgen Audretsch, Franz Gähler, and Norbert Straumann. Wave fields in Weyl spaces and conditions for the existence of a preferred pseudo-Riemannian structure. Communications in Mathematical Physics, 95 (1): 41–51, 1984. URL https://doi.org/10.1007/BF01215754.

  5. Frank Beckman and Donald Quarles. On isometries of Euclidean spaces. Proceedings of the American Mathematical Society, 4: 810–815, 1953. URL https://doi.org/10.1090/S0002-9939-1953-0058193-5.

  6. Walter Benz. Eine Beckman-Quarles-Charakterisierung der Lorentztransformationen des \(\mathbb{R}^n\). Archiv der Mathematik, 34 (1): 550–559, 1980. URL https://doi.org/10.1007/BF01224997.

  7. Walter Benz. A Beckman Quarles type theorem for plane Lorentz transformations. Mathematische Zeitschrift, 177: 101–106, 1981. URL https://doi.org/10.1007/BF01214341.

  8. Antonio N. Bernal, Miguel A. Javaloyes, and Miguel Sánchez. Foundations of Finsler spacetimes from the observers viewpoint. Universe, 6 (4): 55 (1–39), 2020. URL https://doi.org/10.3390/universe6040055.

  9. Hans-Jürgen Borchers and Gerhard Hegerfeld. The structure of space-time transformations. Communications in Mathematical Physics, 28 (4): 259–266, 1972. URL https://doi.org/10.1007/BF01645780.

    Article  MathSciNet  Google Scholar 

  10. Max Born. Kritische Betrachtungen zur traditionellen Darstellung der Thermodynamik I-III. Physikalische Zeitschrift, 22: 218–224, 249–254, 282–286, 1921.

    Google Scholar 

  11. Max Born. Vorlesungen über Atommechanik. Erster Band, volume II of Struktur der Materie in Einzeldarstellungen. Verlag von Julius Springer, Berlin, 1925.

    Google Scholar 

  12. Max Born. Natural Philosophy of Cause and Chance. Clarendon Press, Oxford, 1949. Based on Waynflete Lectures, delivered in the College of St. Mary Magdalen, Oxford, in Hilary Term 1948.

    Google Scholar 

  13. Andrew J. Briginshaw. The axiomatic geometry of Space Time: An assessment of the work of A. A. Robb. Centaurus, 22 (4): 315–323, 1979. URL https://doi.org/10.1111/j.1600-0498.1979.tb00595.x.

  14. Constantin Carathéodory. Untersuchungen über die Grundlagen der Thermodynamik. Mathematische Annalen, 67: 355–386, 1909. URL https://doi.org/10.1007/BF01450409.

  15. Constantin Carathéodory. Zur Axiomatik der speziellen Relativitätstheorie. Sitzungsberichte der Preussische Akademie der Wissenschaften (Berlin). Physikalisch-Mathematische Klasse, pages 12–27, 1924.

    Google Scholar 

  16. Robert Alan Coleman and Herbert Korte. Jet bundles and path structures. Journal of Mathematical Physics, 21 (6): 1340–1351, 1980. URL https://doi.org/10.1063/1.524598.

  17. Michael Eckert. Arnold Sommerfeld - Atomphysiker und Kulturbote 1868-1951. Eine Biographie. Wallstein Verlag, Göttingen, 2013.

    Google Scholar 

  18. Jürgen Ehlers and Egon Köhler. Path structures on manifolds. Journal of Mathematical Physics, 18 (10): 2014–2018, 1977. URL https://doi.org/10.1063/1.523175.

    Article  Google Scholar 

  19. Jürgen Ehlers, Felix Pirani, and Alfred Schild. The geometry of free fall and light propagation. In Lochlainn O’Raifeartaigh, editor, General Relativity. Papers in Honor of J.L. Synge, pages 63–84. Clarendon Press, Oxford, 1972.

    Google Scholar 

  20. Jürgen Ehlers, Felix Pirani, and Alfred Schild. The geometry of free fall and light propagation. General Relativity and Gravitation, 44: 1587–1609, 2012. URL https://doi.org/10.1007/s10714-012-1353-4. Republication of the 1972 original as “Golden Oldie”.

  21. Tatjana Ehrenfest-Afanasjewa. Zur Axiomatisierung des zweiten Hauptsatzes der Thermodynamik. Zeitschrift für Physik, 33: 933–945, 1925. URL https://doi.org/10.1007/BF01328381.

  22. Albert Einstein. Geometrie und Erfahrung. Verlag von Julius Springer, Berlin, 1921. Erweiterte Fassung des Festvortrages gehalten an der Preussischen Akademie der Wissenschaften zu Berlin am 27. Januar 1921. Reprinted in [Janssen et al., 2002,Doc. 46, p 382–402].

    Google Scholar 

  23. Paul Finsler. Über Kurven und Flächen in allgemeinen Räumen, volume 11 of Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften. Mathematische Reihe. Birkhäuser Verlag, Basel, 1951. Unchanged reprint of the dissertation from 1918.

    Google Scholar 

  24. Albrecht Fölsing. Heinrich Hertz - Eine Biographie. Hoffmann und Campe, Hamburg, 1997.

    Google Scholar 

  25. Georg Frobenius. Ueber das Pfaffsche Problem. Journal für die reine und angewandte Mathematik, 82: 230–315, 1877. URL http://eudml.org/doc/148315.

  26. Maria Georgiadou. Constantin Carathéodory: Mathematics and Politics in Turbulent Times. Springer-Verlag, Berlin, 2004.

    Book  Google Scholar 

  27. Robin Giles. Mathematical Foundations of Thermodynamics, volume 53 of International series of monographs on pure and applied mathematics. Pergamon Press, Oxford, 1964.

    Google Scholar 

  28. Domenico Giulini. Das Problem der Trägheit. Philosophia Naturalis, 39 (2): 843–374, 2002.

    Google Scholar 

  29. Domenico Giulini. Max Born’s “Vorlesungen über Atommechanik”. In Massimiliano Badino and Jaume Navarro, editors, Research and Pedagogy: A History of Quantum Physics through Its Textbooks, volume 2 of Max Planck Research Library for the History and Development of Knowledge, pages 207–229. Max Planck Institute for the History of Science: Edition Open Access 2013, Berlin, 2013. URL https://www.mprl-series.mpg.de/media/studies/2/Studies2.pdf.

  30. Stephen W. Hawking, Andrew R. King, and Patrick J. McCarthy. A new topology for curved space time which incorporates the causal, differential, and conformal structures. Journal of Mathematical Physics, 17 (2): 174–181, 1977. URL https://doi.org/10.1063/1.522874.

  31. Werner Heisenberg. Einführung in die Einheitliche Feldtheorie der Elementarteilchen. S. Hirzel Verlag, Stuttgart, 1967.

    Google Scholar 

  32. Heinrich Hertz. Die Prinzipien der Mechanik - In neuem Zusammenhage dargestellt. Verlag von Johann Ambrosius Barth (Arthur Meiner), Leipzig, 1. edition, 1984. Second edition 1910. Reprint of the second edition by: Sändig Reprint Verlag, Hans R. Wohlwend. Vaduz, Liechtenstein (1999).

    Google Scholar 

  33. David Hilbert. Die Grundlagen der Physik. Erste Mitteilung. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse, 1915: 395–408, 1915. URL https://eudml.org/doc/58946.

  34. David Hilbert. Die Grundlagen der Physik. Zweite Mitteilung. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse, 1917: 53–76, 1917. URL https://eudml.org/doc/58973.

  35. David Hilbert. Die Grundlagen der Physik. Mathematische Annalen, 92: 1–32, 1924. URL https://doi.org/10.1007/BF01448427.

  36. George R. Isaak. Improved limit on the absence of dispersion of the velocity of light. Nature, 223: 161, 1969. URL https://doi.org/10.1038/223161a0.

    Article  Google Scholar 

  37. Michel Janssen, Robert Schulman, Illy József, and Christoph Lehner, editors. The Collected Papers of Albert Einstein, Volume 7. Princeton University Press, Princeton, 2002.

    Google Scholar 

  38. Felix Klein. Vergleichende Betrachtungen über neuere geometrische Forschungen. Verlag von Andreas Deichert, Erlangen, first edition, 1872. Reprinted in Mathematische Annalen (Leipzig) 43:43-100, 1892.

    Google Scholar 

  39. Felix Klein. Zu Hilberts erster Note über die Grundlagen der Physik. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse, 1917: 469–482, 1917. URL https://eudml.org/doc/59004.

  40. Hand-Peter Künzle. Galilei and Lorentz structures on space-time :comparison of the corresponding geometry. Annales de l’Institut Henri Poincaré, 17 (4): 337–362, 1972. URL http://www.numdam.org/item/AIHPA_1972__17_4_337_0.

    MathSciNet  Google Scholar 

  41. Claus Lämmerzahl and Volker Perlick. Finsler geometry as a model for relativistic gravity. International Journal of Geometric Methods in Modern Physics, 15 (Supp. 1): 1850166(1–20), 2018. URL https://doi.org/10.1142/S0219887818501669.

  42. Claus Lämmerzahl, Volker Perlick, and Hasse Wolfgang. Observable effects in a class of spherically symmetric static Finsler spacetimes. Physical Review D, 86 (10): 104042(1–13), 2012. URL https://doi.org/10.1103/PhysRevD.86.104042.

  43. Alfred Landé. Axiomatische Begründung der Thermodynamik durch Carathéodory. In H. Geiger and Karl Scheel, editors, Handbuch der Physik. Band IX: Theorien der Wärme, pages 281–300. Verlag von Julius Springer, Berlin, 1926.

    Google Scholar 

  44. June A. Lester. The Beckman-Quarles theorem in Minkowski space for a spacelike square-distance. Archiv der Mathematik, 37 (1): 561–568, 1981.

    Article  MathSciNet  Google Scholar 

  45. Elliott H. Lieb and Jakob Yngvason. A guide to entropy and the second law of thermodynamics. Notices of the American Mathematical Society, 45 (5): 571–581, 1998. URL https://doi.org/10.1007/978-3-662-10018-9_19.

  46. Elliott H. Lieb and Jakob Yngvason. The physics and mathematics of the second law of thermodynamics. Physics Reports, 310 (1): 1–96, 1999. URL https://doi.org/10.1016/S0370-1573(98)00082-9.

  47. Elliott H. Lieb and Jakob Yngvason. A fresh look at entropy and the second law of thermodynamics. Physics Today, 53 (4): 32–37, 2000. URL https://doi.org/10.1063/1.883034.

  48. Elliott H. Lieb and Jakob Yngvason. The entropy concept for non-equilibrium states. Proceedings of the Royal Society A, 469 (2158): 1–15, 2013. URL https://doi.org/10.1098/rspa.2013.0408.

  49. David B. Malament. The class of continuous timelike curves determines the topology of spacetime. Journal of Mathematical Physics, 18 (7): 1399–1404, 1977. URL https://doi.org/10.1063/1.523436.

  50. Robert Marsland, Harvey R. Brown, and Giovanni Valente. Time and irreversibility in axiomatic thermodynamics. American Journal of Physics, 83 (7): 628–634, 2015. URL https://doi.org/10.1119/1.4914528.

  51. Robert F. Marzke. The theory of measurement in general relativity, 1959. A.B. Senior Thesis, Princeton University; unpublished.

    Google Scholar 

  52. Robert F. Marzke and John A. Wheeler. Gravitation as geometry - I: The geometry of space-time and the geometrodynamical standard meter. In Hong-Yee Chiu and William F. Hoffmann, editors, Gravitation and Relativity, pages 40–64. W. A. Benjamin, Inc., New York and Amsterdam, 1964.

    Google Scholar 

  53. Vladimir S. Matveev and Erhard Scholz. Light cone and Weyl compatibility of conformal and projective structures, 2020. URL https://arxiv.org/abs/2001.01494.

  54. Vladimir S. Matveev and Andrzej Trautman. A criterion for compatibility of conformal and projective structures. Communications of Mathematical Physics, 329: 821–825, 2013. URL https://doi.org/10.1007/s00220-013-1850-7.

  55. Gustav Mie. Grundlagen einer Theorie der Materie. Erste Mitteilung. Annalen der Physik, 342 (3): 511–534, 1912a. URL https://doi.org/10.1002/andp.19123420306.

  56. Gustav Mie. Grundlagen einer Theorie der Materie. Zweite Mitteilung. Annalen der Physik, 344 (11): 1–40, 1912b. URL https://doi.org/10.1002/andp.19123441102.

  57. Gustav Mie. Grundlagen einer Theorie der Materie. Dritte Mitteilung - Schluß. Annalen der Physik, 345 (1): 1–66, 1913. URL https://doi.org/10.1002/andp.19133450102.

  58. Ettore Minguzzi. Light cones in Finsler spacetime. Communications in Mathematical Physics, 334: 1529–1551, 2015. URL https://doi.org/10.1007/s00220-014-2215-6.

  59. Brent Mundy. Optical axiomatization of Minkowski space-time geometry. Philosophy of Science, 53 (1): 1–30, 1986. URL https://www.jstor.org/stable/187918.

  60. Isaac Newton. Letter to Bentley, 25 February 1692/3. In Herbert Westren Turnbull, editor, The Correspondence of Isaac Newton, Volume III (1688-1694), pages 253–256 (letter 406). Cambridge University Press, Cambridge, 1961. Published for the Royal Society.

    Google Scholar 

  61. Emmy Noether. Invariante Variationsprobleme. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse, 1918: 235–257, 1918. URL https://eudml.org/doc/59024.

  62. Wolfgang Pauli. Relativitätstheorie. In Arnold Sommerfeld, editor, Enzyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, volume V/2, pages 539–775. B.G. Teubner, Leipzig, 1921.

    Google Scholar 

  63. Volker Perlick. Characterization of standard clocks in general relativity. In Ulrich Majer and Heinz-Jürgen Schmidt, editors, Semantical Aspects of Spacetime Theories, pages 169–180. Bibliographisches Institut Wissenschaftsverlag, Leipzig, 1994.

    Google Scholar 

  64. Herbert Pfister and Markus King, editors. Inertia and Gravitation. The Fundamental Nature and Structure of Space-Time, volume 897 of Lecture Notes in Physics. Springer Verlag, Cham (Switzerland), 2015.

    Google Scholar 

  65. Hans Reichenbach. Axiomatik der relativistischen Raum-Zeit-Lehre, volume 72 of Die Wissenschaft. Friedrich Vieweg & Sohn, Braunschweig, 1924. Reprinted 1965.

    Google Scholar 

  66. Hans Reichenbach. Axiomatisation of the Theory of Relativity. University of California Press, Berkeley and Los Angeles, 1969. Edited and translated by Maria Reichenbach from the 1924 german original.

    Google Scholar 

  67. Alfred A. Robb. Optical Geometry of Motion. W. Heffer and Sons Ltd., Cambridge, 1911.

    MATH  Google Scholar 

  68. Alfred A. Robb. A Theory of Time and Space. Cambridge University Press, Cambridge, 1914.

    Google Scholar 

  69. Alfred A. Robb. The Absolute Relations of Time and Space. Cambridge University Press, Cambridge, 1921.

    MATH  Google Scholar 

  70. Alfred A. Robb. Geometry of Time and Space. Cambridge University Press, Cambridge, 1936.

    MATH  Google Scholar 

  71. John W. Schutz. Independent Axioms for Minkowski Space-Time, volume 373 of Pitman Research Notes in Mathematics Series. Addison Wesley Longman Limited, Harlow (UK), 1997.

    Google Scholar 

  72. Arnold Sommerfeld. Vorlesungen über Theoretische Physik. Band I: Mechanik. Akademische Verlagsanstalt Geest & Portig K.-G., Leipzig, 6. edition, 1962a.

    Google Scholar 

  73. Arnold Sommerfeld. Vorlesungen über Theoretische Physik. Band V: Thermodynamik und Statistik. Akademische Verlagsanstalt Geest & Portig K.-G., Leipzig, 2. edition, 1962b.

    Google Scholar 

  74. Norbert Straumann. Thermodynamik, volume 265 of Lecture Notes in Physics. Springer Verlag, Berlin, 1986.

    Google Scholar 

  75. Reza K. Tavakol and Norbert van den Bergh. Finsler spaces and the underlying geometry of space-time. Physics Letters A, 112 (1–2): 23–25, 1985. URL https://doi.org/10.1016/0375-9601(85)90453-0.

  76. André Thess. The Entropy Principle. Thermodynamics for the Unsatisfied. Springer-Verlag, Berlin, 2011.

    Book  Google Scholar 

  77. Hermann Weyl. Axiomatik. Library of the Princeton Institute for Advanced Studies. Unpublished manuscript of lectures delivered at the University of Göttingen in the winter semester 1930-31.

    Google Scholar 

  78. Hermann Weyl. Raum – Zeit – Materie. Verlag von Julius Springer, Berlin, 1 edition, 1918. Second edition 1919, third 1920, fourth 1921, and fifth 1923.

    Google Scholar 

  79. Erik Christopher Zeeman. Causality implies the Lorentz group. Journal of Mathematical Physics, 5 (4): 490–493, 1964. URL https://doi.org/10.1063/1.1704140.

  80. Erik Christopher Zeeman. The topology of Minkowski space. Topology, 6: 161–170, 1967. URL https://doi.org/10.1016/0040-9383(67)90033-X.

Download references

Acknowledgements

I sincerely thank the organizers for inviting me to the conference Axiomatic Thinking: One hundred years since Hilbert’s address in Zürich, held at Zürich University on 14–15 September 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Giulini .

Editor information

Editors and Affiliations

Appendix: German Originals of Quotations

Appendix: German Originals of Quotations

Reichenbach

From “Axiomatik der relativistischen Raum-Zeit Lehre”

[65, p. 1–2], quoted on page 231:

Es ist der Wert einer axiomatischen Darstellung, dass sie den Inhalt einer wissenschaftlichen Theorie in wenigen Sätzen zusammenfasst; jedes Urteil über die Aussagen der Theorie darf sich dann auf ein Urteil über die Axiome beschränken, denn in ihnen ist jeder Satz der Theorie schon implizite enthalten. ... die Frage der mathematischen Axiome ist geklärt durch die Entdeckung, dass die mathematischen Axiome Definitionen sind, d.h. willkürliche Fest-setzungen, über die es kein wahr oder falsch gibt, und dass nur die logischen Eigenschaften des Systems, Widerspruchsfreiheit, Unabhängigkeit, Eindeutigkeit, Vollständigkeit Gegenstand der Kritik sein können.

Die Physik unterscheidet sich jedoch von der Mathematik in einer wesentlichen Beziehung. Ihre Sätze wollen mehr sein als konsequente Folgen willkürlicher Setzungen; sie wollen für die Wirklichkeit Geltung besitzen.

Das Urteil ‘wahr’ oder ‘falsch’ bedeutet deshalb in der Physik etwas wesentlich anderes als in der Mathematik; es ist eine außerlogische Beziehung, es besagt das Zutreffen oder Nichtzutreffen eines Wahrnehmungserlebnisses. Und die Frage nach der Wahrheit erscheint dem Physiker als das eigentlich Interessante; denn wenn sie bejaht wird, darf er seine Theorie in einem gewissen Sinne als eine Beschreibung der Wirklichkeit bezeichnen.

Die axiomatische Darstellung einer physikalischen Theorie ist zunächst den gleichen Gese-tzen unterworfen wie in der Mathematik [...]. Aber gerade weil die physikalischen Axiome ebenfalls die ganze Theorie schon implizite enthalten, überträgt sich der Geltungsanspruch auch auf sie; die physikalischen Axiome dürfen nicht willkürlich, sie müssen wahr sein. Wahr bedeutet hier wieder ein Tatsachenurteil, welches letzten Endes die Wahrnehmung fällt.

Einstein

From “Geometrie und Erfahrung”

[37, Doc. 52, p. 385–6], quoted on page 233:

Insofern sich sie Sätze der Mathematik auf die Wirklichkeit beziehen sind sie nicht sicher, und insofern sie sicher sind, beziehen sie sich nicht auf die Wirklichkeit.

From discussions at Bad-Nauheim (1920)

[37, Doc. 46, p. 353], quoted on page 236:

Es ist eine logische Schwäche der Relativitätstheorie in ihrem heutigen Zustande, dass sie Maßstäbe und Uhren gesondert einführen muss, statt sie als Lösungen von Differentialgleichungen konstruieren zu können. Was aber die Zuverlässigkeit der Konsequenzen hinsichtlich der Beziehung auf das empirische Fundament der Theorie anbelangt, so sind die Konsequenzen, welche das Verhalten der starren Körper und Uhren betreffen, die am besten gesicherten.

From “Geometrie und Erfahrung”

[37, Doc. 52, p. 386], quoted on page 257:

Der von der Axiomatik erzielte Fortschritt besteht nämlich darin, dass durch sie das Logisch-Formale vom sachlichen oder anschaulichen Gehalt sauber getrennt wurde; nur das Logisch-Formale bildet gemäß der Axiomatik den Gegenstand der Mathematik, nicht aber der mit dem Logisch-Formalen verknüpfte anschauliche oder sonstige Inhalt.

Hertz

From the introduction of “Prinzipien der Mechanik”

[32, p. 1–3], quoted on page 236:

Wir machen uns innere Scheinbilder oder Symbole der äußeren Gegenstände, und zwar machen wir sie von solcher Art, dass die denknotwendigen Folgen der Bilder stets wieder die Bilder seien von den naturnotwendigen Folgen der abgebildeten Gegenstände.

Die Bilder, von welchen wir reden, sind unsere Vorstellungen von den Dingen; sie haben mit den Dingen die eine wesentliche Übereinstimmung, welche in der Erfüllung der genann-ten Forderung liegt, aber es ist für ihren Zweck nicht nötig, dass die irgend eine weitere Übereinstimmung mit den Dingen haben.

Eindeutig sind die Bilder, welche wir uns von den Dingen machen wollen, noch nicht be-stimmt durch die Forderung, dass die Folgen der Bilder wieder die Bilder der Folgen seien.

Von zwei Bildern desselben Gegenstandes wird dasjenige das zweckmäßigere sein, welches mehr wesentliche Beziehungen des Gegenstandes wiederspiegelt als das andere, welches, wie wir sagen wollen, das deutlichere ist. Bei gleicher Deutlichkeit wird von zwei Bildern dasjenige zweckmäßiger, welches neben den wesentlichen Zügen die geringere Zahl überflüssiger oder leerer Beziehungen enthält, welches also das einfachere ist.

Pauli

From [62, p. 775], quoted on page 250:

Wie immer man sich im Einzelnen zu diesen Argumenten stellen mag, so viel scheint sicher zu sein, dass zu den Grundlagen der bisher aufgestellten Theorien erst neue, der Kontinu-umsauffassung des Feldes fremde Elemente hinzukommen müssen, damit man zu einer befriedigenden Lösung des Problems der Materie gelangt.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giulini, D. (2022). Axiomatic Thinking in Physics—Essence or Useless Ornament?. In: Ferreira, F., Kahle, R., Sommaruga, G. (eds) Axiomatic Thinking II. Springer, Cham. https://doi.org/10.1007/978-3-030-77799-9_10

Download citation

Publish with us

Policies and ethics