Skip to main content

The Dog as a Model to Study the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Abstract

Cancer is a complex and dynamic disease with an outcome that depends on a strict crosstalk between tumor cells and other components in tumor microenvironment, namely, tumor-infiltrating immune cells, fibroblasts, cancer stem cells, adipocytes, and endothelial cells. Within the tumor microenvironment, macrophages and T-lymphocytes appear to be key effectors during the several steps of tumor initiation and progression. Tumor cells, through the release of a plethora of signaling molecules, can induce immune tolerance, by avoiding immune surveillance, and inhibit immune cells cytotoxic functions. Furthermore, as the tumor grows, tumor microenvironment reveals a series of dysfunctional conditions that potentiate a polarization of harmful humoral Th2 and Th17, an upregulation of Treg cells, and a differentiation of macrophages into the M2 subtype, which contribute to the activation of several signaling pathways involving important tissue biomarkers (COX-2, EGFR, VEGF) implicated in cancer aggressiveness and poor clinical outcomes. In order to maintain the tumor growth, cancer cells acquire several adaptations such as neovascularization and metabolic reprogramming. An extensive intracellular production of lactate and protons is observed in tumor cells as a result of their high glycolytic metabolism. This contributes not only for the microenvironment pH alteration but also to shape the immune response that ultimately impairs immune cells capabilities and effector functions.

In this chapter, the complexity of tumor microenvironment, with special focus on macrophages, T-lymphocytes, and the impact of lactate efflux, was reviewed, always trying to demonstrate the strong similarities between data from studies of humans and dogs, a widely proposed model for comparative oncology studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuan Y, Jiang YC, Sun CK, Chen QM (2016) Role of the tumor microenvironment in tumor progression and the clinical applications (review). Oncol Rep 35:2499–2515

    Article  CAS  PubMed  Google Scholar 

  2. Finn OJ (2012) Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. https://doi.org/10.1093/annonc/mds256

  3. DeNardo DG, Andreu P, Coussens LM (2010) Interactions between lymphocytes and myeloid cells regulate pro-versus anti-tumor immunity. Cancer Metastasis Rev 29:309–316

    Article  PubMed  PubMed Central  Google Scholar 

  4. Normanno N, Gullick WJ (2006) Epidermal growth factor receptor tyrosine kinase inhibitors and bone metastases: different mechanisms of action for a novel therapeutic application? Endocr Relat Cancer 13:3–6

    Article  CAS  PubMed  Google Scholar 

  5. Estrela-Lima A, Araújo MSS, Costa-Neto JM et al (2010) Immunophenotypic features of tumor infiltrating lymphocytes from mammary carcinomas in female dogs associated with prognostic factors and survival rates. BMC Cancer 10. https://doi.org/10.1186/1471-2407-10-256

  6. Carvalho MI, Pires I, Prada J et al (2015) Positive interplay between CD3+ T-lymphocytes and concurrent COX-2/EGFR expression in canine malignant mammary tumors. Anticancer Res 35:2915–2920

    PubMed  Google Scholar 

  7. Gregório H, Raposo TP, Queiroga FL et al (2016) Investigating associations of cyclooxygenase-2 expression with angiogenesis, proliferation, macrophage and T-lymphocyte infiltration in canine melanocytic tumours. Melanoma Res 26:338–347. https://doi.org/10.1097/CMR.0000000000000262

    Article  CAS  PubMed  Google Scholar 

  8. Kim JH, Chon SK, Im KS et al (2013) Infiltrating Foxp3+ Regulatory T cells and histopathological features in canine classical and spermatocytic seminomas. Reprod Domest Anim 48:218–222. https://doi.org/10.1111/j.1439-0531.2012.02135.x

    Article  CAS  PubMed  Google Scholar 

  9. Carvalho MI, Pires I, Dias M et al (2015) Intratumoral CD3+ T-lymphocytes immunoexpression and its association with c-Kit, angiogenesis, and overall survival in malignant canine mammary tumors. Anal Cell Pathol (Amst) 2015:920409. https://doi.org/10.1155/2015/920409

    Article  CAS  Google Scholar 

  10. Raposo T, Gregório H, Pires I et al (2014) Prognostic value of tumour-associated macrophages in canine mammary tumours. Vet Comp Oncol 12:10–19. https://doi.org/10.1111/j.1476-5829.2012.00326.x

    Article  CAS  PubMed  Google Scholar 

  11. Choi SYC, Collins CC, Gout PW, Wang Y (2013) Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol 230:350–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanahan D, Weinberg RA (2011) Hallmarks of Cancer: The Next Generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  13. Wettersten HI, Aboud OA, Lara PN, Weiss RH (2017) Metabolic reprogramming in clear cell renal cell carcinoma. Nat Rev Nephrol 13:410–419

    Article  CAS  PubMed  Google Scholar 

  14. López de la Oliva AR, Campos-Sandoval JA, Gómez-García MC et al (2020) Nuclear translocation of Glutaminase GLS2 in human cancer cells associates with proliferation arrest and differentiation. Sci Rep 10. https://doi.org/10.1038/s41598-020-58264-4

  15. Harting TP, Stubbendorff M, Hammer SC et al (2017) Dichloroacetate affects proliferation but not apoptosis in canine mammary cell lines. PLoS One 12. https://doi.org/10.1371/journal.pone.0178744

  16. Harting T, Stubbendorff M, Willenbrock S et al (2016) The effect of dichloroacetate in canine prostate adenocarcinomas and transitional cell carcinomas in vitro. Int J Oncol 49:2341–2350. https://doi.org/10.3892/ijo.2016.3720

    Article  CAS  PubMed  Google Scholar 

  17. Burrai GP, Tanca A, Cubeddu T et al (2017) A first immunohistochemistry study of transketolase and transketolase-like 1 expression in canine hyperplastic and neoplastic mammary lesions. BMC Vet Res 13. https://doi.org/10.1186/s12917-017-0961-3

  18. Hui L, Chen Y (2015) Tumor microenvironment: sanctuary of the devil. Cancer Lett 368:7–13. https://doi.org/10.1016/j.canlet.2015.07.039

    Article  CAS  PubMed  Google Scholar 

  19. Brassart-Pasco S, Brezilon S, Brassart B et al (2020) Tumor microenvironment: extracellular matrix alterations influence tumor progression. Front Oncol 10. https://doi.org/10.3389/fonc.2020.00397

  20. dos Reis DC, Damasceno KA, de Campos CB et al (2019) Versican and tumor-associated macrophages promotes tumor progression and metastasis in canine and murine models of breast carcinoma. Front Oncol 9. https://doi.org/10.3389/fonc.2019.00577

  21. Pulz LH, Strefezzi RF (2017) Proteases as prognostic markers in human and canine cancers. Vet Comp Oncol 15:669–683. https://doi.org/10.1111/vco.12223

    Article  CAS  PubMed  Google Scholar 

  22. Brachelente C, Cappeli K, Capommacio S et al (2017) Transcriptome analysis of canine cutaneous melanoma and melanocytoma reveals a modulation of genes regulating extracellular matrix metabolism and cell cycle. Sci Rep 7. https://doi.org/10.1038/s41598-017-06281-1

  23. Chen X, Song E (2019) Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov 18:99–115. https://doi.org/10.1038/s41573-018-0004-1

    Article  CAS  PubMed  Google Scholar 

  24. Lambrechts D, Wauters E, Boeckx B et al (2018) Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med 24:1277–1289. https://doi.org/10.1038/s41591-018-0096-5

    Article  CAS  PubMed  Google Scholar 

  25. Liu T, Han C, Wang S et al (2019) Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J Hematol Oncol 12. https://doi.org/10.1186/s13045-019-0770-1

  26. Poltavets V, Kochetkova M, Pitson S et al (2018) The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Front Oncol 8. https://doi.org/10.3389/fonc.2018.00431

  27. Król M, Pawlowski K, Szyszko K et al (2012) The gene expression profiles of canine mammary cancer cells grown with carcinoma-associated fibroblasts (CAFs) as a co-culture in vitro. BMC Vet Res 8. https://doi.org/10.1186/1746-6148-8-35

  28. Borecka P, Ciaputa R, Janus I et al (2020) Expression of podoplanin in mammary cancers in female dogs. In Vivo International Institute of Anticancer Research 34:213–223. https://doi.org/10.21873/invivo.11763

    CAS  Google Scholar 

  29. Kaneko MK, Honma R, Ogasawara S et al (2016) PMab-38 recognizes canine podoplanin of squamous cell carcinomas. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy 35:263–266. https://doi.org/10.1089/mab.2016.0036

    Article  CAS  PubMed  Google Scholar 

  30. Ogasawara S, Honma R, Kaneko M et al (2016) Podoplanin expression in canine melanoma monoclonal antibodies in immunodiagnosis and immunotherapy. Monoclon Antib Immunodiagn Immunother 35:304–306. https://doi.org/10.1089/mab.2016.0040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pulz LH, Barra C, Alexandre P et al (2019) Identification of two molecular subtypes in canine mast cell tumours through gene expression profiling. PLoS One 14. https://doi.org/10.1371/journal.pone.0217343

  32. Chen S-Y, Huang Y-C, Liu S-P et al (2011) An overview of concepts for cancer stem cells. Cell Transplant 20:113–120. https://doi.org/10.3727/096368910X532837

    Article  CAS  PubMed  Google Scholar 

  33. Rybicka A, Król M (2016) Identification and characterization of cancer stem cells in canine mammary tumors. Acta Vet Scand 58

    Google Scholar 

  34. Rogez B, Pascal Q, Bobillier A et al (2019) CD44 and CD24 expression and prognostic significance in canine mammary tumors. Vet Pathol 56:377–388. https://doi.org/10.1177/0300985818813653

    Article  CAS  PubMed  Google Scholar 

  35. Ferletta M, Grawé J, Hellmén E (2011) Canine mammary tumors contain cancer stem-like cells and form spheroids with an embryonic stem cell signature. Int J Dev Biol 55:791–799. https://doi.org/10.1387/ijdb.113363mf

    Article  PubMed  Google Scholar 

  36. Zhu Z, Zhu X, Yang S et al (2020) Yin-yang effect of tumour cells in breast cancer: from mechanism of crosstalk between tumour-associated macrophages and cancer-associated adipocytes. Am J Cancer Res 10:383–392

    Google Scholar 

  37. Liu L, Wu Y, Zhang C et al (2020) Cancer-associated adipocytes-derived G-CSF promotes breast cancer malignancy via Stat3 signaling. J Mol Cell Biol. https://doi.org/10.1093/jmcb/mjaa016

  38. Lim HY, Im KS, Kim NH et al (2015) Effects of obesity and obesity-related molecules on canine mammary gland tumors. Vet Pathol 52:1045–1051. https://doi.org/10.1177/0300985815579994

    Article  CAS  PubMed  Google Scholar 

  39. Lim HY, Im KS, Kim NH et al (2015) Obesity, expression of adipocytokines, and macrophage infiltration in canine mammary tumors. Vet J 203:326–331. https://doi.org/10.1016/j.tvjl.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  40. Carvalho MI, Pires I, Prada J et al (2016) High COX-2 expression is associated with increased angiogenesis, proliferation and tumoural inflammatory infiltrate in canine malignant mammary tumours: A multivariate survival study. Vet Comp Oncol. https://doi.org/10.1111/vco.12206

  41. Carvalho MI, Pires I, Prada J et al (2016) Intratumoral FoxP3 expression is associated with angiogenesis and prognosis in malignant canine mammary tumors. Vet Immunol Immunopathol 178:1–9. https://doi.org/10.1016/j.vetimm.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  42. Raposo TP, Pires I, Carvalho MI et al (2015) Tumour-associated macrophages are associated with vascular endothelial growth factor expression in canine mammary tumours. Vet Comp Oncol 13:464–474. https://doi.org/10.1111/vco.12067

    Article  CAS  PubMed  Google Scholar 

  43. Sleeckx N, Van Brantegem L, Van den Eynden G et al (2014) Lymphangiogenesis in canine mammary tumours: a morphometric and prognostic study. J Comp Pathol 150:184–193. https://doi.org/10.1016/j.jcpa.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  44. Camacho L, Peña L, Gil AG et al (2014) Immunohistochemical vascular factor expression in canine inflammatory mammary carcinoma. Vet Pathol 51:737–748. https://doi.org/10.1177/0300985813503568

    Article  CAS  PubMed  Google Scholar 

  45. Grivennikov SI, Greten FR, Karin M (2010) Immunity, Inflammation, and Cancer. Cell 140:883–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Raposo TP, Beirão BCB, Pang LY et al (2015) Inflammation and cancer: till death tears them apart. Vet J 205:161–174. https://doi.org/10.1016/j.tvjl.2015.04.015

    Article  CAS  PubMed  Google Scholar 

  47. Mukaida N, Sasaki S, Baba T (2020) Two-faced roles of tumor-associated neutrophils in cancer development and progression. Int J Mol Sci 21:3457. https://doi.org/10.3390/ijms21103457

    Article  CAS  PubMed Central  Google Scholar 

  48. Snoderly HT, Boone BA, Bennewitz MF (2019) Neutrophil extracellular traps in breast cancer and beyond: current perspectives on NET stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment. Breast Cancer Res 21:145

    Google Scholar 

  49. Goggs R, Jeffery U, LeVine DN, Li RHL (2020) Neutrophil-extracellular traps, cell-free DNA, and immunothrombosis in companion animals: a review. Vet Pathol 57:6–23

    Article  CAS  PubMed  Google Scholar 

  50. Macfarlane L, Morris J, Pratschke K et al (2016) Diagnostic value of neutrophil-lymphocyte and albumin-globulin ratios in canine soft tissue sarcoma. J Small Anim Pract 57:135–141. https://doi.org/10.1111/jsap.12435

    Article  CAS  PubMed  Google Scholar 

  51. MacFarlane MJ, MacFarlane LL, Scase T et al (2016) Use of neutrophil to lymphocyte ratio for predicting histopathological grade of canine mast cell tumours. Vet Rec 179:491. https://doi.org/10.1136/vr.103650

    Article  CAS  PubMed  Google Scholar 

  52. de Souza TA, de Campos CB, De Biasi Bassani Gonçalves A et al (2018) Relationship between the inflammatory tumor microenvironment and different histologic types of canine mammary tumors. Res Vet Sci 119:209–214. https://doi.org/10.1016/j.rvsc.2018.06.012

    Article  CAS  PubMed  Google Scholar 

  53. Sarvaria A, Madrigal JA, Saudemont A (2017) B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol 14:662–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cai X, Zhang L, Wei W (2019) Regulatory B cells in inflammatory diseases and tumor. Int Immunopharmacol 67:281–286

    Article  CAS  PubMed  Google Scholar 

  55. Tokunaga R, Naseem M, Lo JH et al (2019) B cell and B cell-related pathways for novel cancer treatments. Cancer Treat Rev 73:10–19

    Article  CAS  PubMed  Google Scholar 

  56. Wouters MCA, Nelson BH (2018) Prognostic significance of tumor-infiltrating B cells and plasma cells in human cancer. Clin Cancer Res 24:6125–6135

    Article  CAS  PubMed  Google Scholar 

  57. Porcellato I, Silvestri S, Menchetti L et al (2019) Tumour-infiltrating lymphocytes in canine melanocytic tumours: an investigation on the prognostic role of CD3+ and CD20+ lymphocytic populations. Vet Comp Oncol. https://doi.org/10.1111/vco.12556

  58. Faulkner S, Jobling P, March B et al (2019) Tumor neurobiology and the war of nerves in cancer. Cancer Discov 9:702–710

    Article  CAS  PubMed  Google Scholar 

  59. Pundavela J, Demont Y, Jobling P et al (2014) ProNGF correlates with Gleason score and is a potential driver of nerve infiltration in prostate cancer. Am J Pathol 184:3156–3162. https://doi.org/10.1016/j.ajpath.2014.08.009

    Article  CAS  PubMed  Google Scholar 

  60. Jobling P, Pundavela J, Oliveira SMR et al (2015) Nerve-cancer cell cross-talk: a novel promoter of tumor progression. Cancer Res 75:1777–1781

    Article  CAS  PubMed  Google Scholar 

  61. Prazeres PHDM, Leonel C, Silva WN et al (2020) Ablation of sensory nerves favours melanoma progression. J Cell Mol Med:1–13

    Google Scholar 

  62. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  63. Carvalho MI, Pires I, Prada J, Queiroga FL T-lymphocytic infiltrate in canine mammary tumours: clinic and prognostic implications. In Vivo 25:963–969

    Google Scholar 

  64. Gregório H, Raposo T, Queiroga FL et al (2016) High COX-2 expression in canine mast cell tumours is associated with proliferation, angiogenesis and decreased overall survival. Vet Comp Oncol. https://doi.org/10.1111/vco.12280

  65. Coussens LM, Werb Z (2002) Coussens L M, Werb Z. Inflammation and cancer [J]. Pharmaceutical Biotechnology, 2002, 420(6917)860. Nature 420:860–867. https://doi.org/10.1038/nature01322.Inflammation

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14

    Google Scholar 

  67. Ohnishi S, Ma N, Thanan R et al (2013) DNA damage in inflammation-related carcinogenesis and cancer stem cells. Oxidative Med Cell Longev 2013:387014. https://doi.org/10.1155/2013/387014

    Article  Google Scholar 

  68. Prima V, Kaliberova LN, Kaliberov S et al (2017) COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc Natl Acad Sci U S A 114:1117–1122. https://doi.org/10.1073/pnas.1612920114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hartley G, Faulhaber E, Caldwell A et al (2017) Immune regulation of canine tumour and macrophage PD-L1 expression. Vet Comp Oncol 15:534–549. https://doi.org/10.1111/vco.12197

    Article  CAS  PubMed  Google Scholar 

  70. Raposo TP, Pires I, Prada J et al (2017) Exploring new biomarkers in the tumour microenvironment of canine inflammatory mammary tumours. Vet Comp Oncol 15:655–666. https://doi.org/10.1111/vco.12209

    Article  CAS  PubMed  Google Scholar 

  71. Allavena P, Sica A, Garlanda C, Mantovani A (2008) The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 222:155–161

    Article  CAS  PubMed  Google Scholar 

  72. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217

    Article  CAS  PubMed  Google Scholar 

  73. Mantovani A, Sica A, Allavena P et al (2009) Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 70:325–330. https://doi.org/10.1016/j.humimm.2009.02.008

    Article  CAS  PubMed  Google Scholar 

  74. Pollard JW (2008) Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 84:623–630. https://doi.org/10.1189/jlb.1107762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Doedens AL, Stockmann C, Rubinstein MP et al (2010) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70:7465–7475. https://doi.org/10.1158/0008-5472.CAN-10-1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hildenbrand R, Dilger I, Hörlin A, Stutte HJ (1995) Urokinase and macrophages in tumour angiogenesis. Br J Cancer 72:818–823. https://doi.org/10.1038/bjc.1995.419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lamagna C, Aurrand-Lions M, Imhof BA (2006) Dual role of macrophages in tumor growth and angiogenesis. J Leukoc Biol 80:705–713. https://doi.org/10.1189/jlb.1105656

    Article  CAS  PubMed  Google Scholar 

  78. Leek RD, Lewis CE, Whitehouse R et al (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56:4625–4629

    CAS  PubMed  Google Scholar 

  79. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612

    Article  CAS  PubMed  Google Scholar 

  80. Murray PJ, Allen JE, Biswas SK et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jetten N, Verbruggen S, Gijbels MJ et al (2014) Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17:109–118. https://doi.org/10.1007/s10456-013-9381-6

    Article  CAS  PubMed  Google Scholar 

  82. Beirão BCB, Raposo T, Pang LY, Argyle DJ (2015) Canine mammary cancer cells direct macrophages toward an intermediate activation state between M1/M2. BMC Vet Res 11. https://doi.org/10.1186/s12917-015-0473-y

  83. Goede V, Brogelli L, Ziche M, Augustin HG (1999) Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int J Cancer 82:765–770. https://doi.org/10.1002/(SICI)1097-0215(19990827)82:5<765::AID-IJC23>3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  84. Luboshits G, Shina S, Kaplan O et al (1999) Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res 59:4681–4687

    CAS  PubMed  Google Scholar 

  85. Ueno T, Toi M, Saji H et al (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 6:3282–3289

    CAS  PubMed  Google Scholar 

  86. Walmsley S, Harris A, Thompson AAR, Whyte MKB (2014) HIF-mediated innate immune responses: cell signaling and therapeutic implications. Hypoxia 2:47. https://doi.org/10.2147/hp.s50269

    Article  PubMed  PubMed Central  Google Scholar 

  87. Park SM, Li Q, Ryu MO et al (2020) Preconditioning of canine adipose tissue-derived mesenchymal stem cells with deferoxamine potentiates anti-inflammatory effects by directing/reprogramming M2 macrophage polarization. Vet Immunol Immunopathol 219:109973. https://doi.org/10.1016/j.vetimm.2019.109973

    Article  CAS  PubMed  Google Scholar 

  88. Wyckoff JB, Wang Y, Lin EY et al (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67:2649–2656. https://doi.org/10.1158/0008-5472.CAN-06-1823

    Article  CAS  PubMed  Google Scholar 

  89. Baer C, Squadrito ML, Laoui D et al (2016) Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity. Nat Cell Biol 18:790–802. https://doi.org/10.1038/ncb3371

    Article  CAS  PubMed  Google Scholar 

  90. Lee CC, Liu KJ, Wu YC et al (2011) Sesamin inhibits macrophage-induced vascular endothelial growth factor and matrix metalloproteinase-9 expression and proangiogenic activity in breast cancer cells. Inflammation 34:209–221. https://doi.org/10.1007/s10753-010-9226-z

    Article  CAS  PubMed  Google Scholar 

  91. Luo Y, Zhou H, Krueger J et al (2006) Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 116:2132–2141. https://doi.org/10.1172/JCI27648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mantovani A, Marchesi F, Malesci A et al (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14:399–416. https://doi.org/10.1038/nrclinonc.2016.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zeisberger SM, Odermatt B, Marty C et al (2007) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95:272–281

    Article  Google Scholar 

  94. Fridlender ZG, Jassar A, Mishalian I et al (2013) Using macrophage activation to augment immunotherapy of established tumours. Br J Cancer 108:1288–1297. https://doi.org/10.1038/bjc.2013.93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Beirão BCB, Raposo T, Jain S et al (2016) Challenges and opportunities for monoclonal antibody therapy in veterinary oncology. Vet J 218:40–50

    Article  PubMed  Google Scholar 

  96. Król M, Pawłowski KM, Majchrzak K et al (2011) Density of tumor-associated macrophages (TAMs) and expression of their growth factor receptor MCSF-R and CD14 in canine mammary adenocarcinomas of various grade of malignancy and metastasis. Pol J Vet Sci 14:3–10. https://doi.org/10.2478/v10181-011-0001-3

    Article  CAS  PubMed  Google Scholar 

  97. Carvalho MI, Pires I, Prada J et al (2017) High COX-2 expression is associated with increased angiogenesis, proliferation and tumoural inflammatory infiltrate in canine malignant mammary tumours: a multivariate survival study. Vet Comp Oncol 15:619–631. https://doi.org/10.1111/vco.12206

    Article  CAS  PubMed  Google Scholar 

  98. Rybicka A, Eylieten C, Taciak B et al (2016) Tumour-associated macrophages influence canine mammary cancer stem-like cells enhancing their pro-angiogenic properties. PubMed – NCBI J Physiol Pharmacol 67:491–500

    CAS  Google Scholar 

  99. Franzoni MS, Brandi A, de Oliveira Matos Prado JK et al (2019) Tumor-infiltrating CD4+ and CD8+ lymphocytes and macrophages are associated with prognostic factors in triple-negative canine mammary complex type carcinoma. Res Vet Sci 126:29–36. https://doi.org/10.1016/j.rvsc.2019.08.021

    Article  CAS  PubMed  Google Scholar 

  100. Monteiro LN, Rodrigues MA, Gomes DA et al (2018) Tumour-associated macrophages: relation with progression and invasiveness, and assessment of M1/M2 macrophages in canine mammary tumours. Vet J 234:119–125. https://doi.org/10.1016/j.tvjl.2018.02.016

    Article  CAS  PubMed  Google Scholar 

  101. Seung BJ, Lim HY, Shin J Il, et al. (2018) CD204-expressing tumor-associated macrophages are associated with malignant, high-grade, and hormone receptor–negative canine mammary gland tumors. Vet Pathol 55:417–424. https://doi.org/10.1177/0300985817750457

    Article  CAS  PubMed  Google Scholar 

  102. Carvalho MI, Bianchini R, Fazekas-Singer J et al (2018) Bidirectional regulation of COX-2 expression between cancer cells and macrophages. Anticancer Res 38:2811–2817. https://doi.org/10.21873/anticanres.12525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bieniasz-Krzywiec P, Martín-Pérez R, Ehling M et al (2019) Podoplanin-expressing macrophages promote lymphangiogenesis and lymphoinvasion in breast cancer. Cell Metab 30:917–936.e10. https://doi.org/10.1016/j.cmet.2019.07.015

    Article  CAS  PubMed  Google Scholar 

  104. Allen SG, Chen YC, Madden JM et al (2016) Macrophages enhance migration in inflammatory breast cancer cells via RhoC GTPase signaling. Sci Rep 6:39190. https://doi.org/10.1038/srep39190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tsutsui S, Yasuda K, Suzuki K et al (2005) Macrophage infiltration and its prognostic implications in breast cancer: The relationship with VEGF expression and microvessel density. Oncol Rep 14:425–431. https://doi.org/10.3892/or.14.2.425

    Article  CAS  PubMed  Google Scholar 

  106. Jeong H, Hwang I, Kang SH et al (2019) Tumor-associated macrophages as potential prognostic biomarkers of invasive breast cancer. J Breast Cancer 22:38–51. https://doi.org/10.4048/jbc.2019.22.e5

    Article  PubMed  PubMed Central  Google Scholar 

  107. Silveira TL, Veloso ES, Gonçalves INN et al (2020) Cyclooxygenase-2 expression is associated with infiltration of inflammatory cells in oral and skin canine melanomas. Vet Comp Oncol vco 12601. https://doi.org/10.1111/vco.12601

  108. Lee WJ, Lee MH, Kim HT et al (2019) Prognostic significance of CD163 expression and its correlation with cyclooxygenase-2 and vascular endothelial growth factor expression in cutaneous melanoma. Melanoma Res 29:501–509. https://doi.org/10.1097/CMR.0000000000000549

    Article  CAS  PubMed  Google Scholar 

  109. Bianchini F, Massi D, Marconi C et al (2007) Expression of cyclo-oxygenase-2 in macrophages associated with cutaneous melanoma at different stages of progression. Prostaglandins Other Lipid Mediat 83:320–328. https://doi.org/10.1016/j.prostaglandins.2007.03.003

    Article  CAS  PubMed  Google Scholar 

  110. Withers SS, Skorupski KA, York D et al (2019) Association of macrophage and lymphocyte infiltration with outcome in canine osteosarcoma. Vet Comp Oncol 17:49–60. https://doi.org/10.1111/vco.12444

    Article  CAS  PubMed  Google Scholar 

  111. Gomez-Brouchet A, Illac C, Gilhodes J et al (2017) CD163-positive tumor-associated macrophages and CD8-positive cytotoxic lymphocytes are powerful diagnostic markers for the therapeutic stratification of osteosarcoma patients: an immunohistochemical analysis of the biopsies from the French OS2006 phase 3 trial. Onco Targets Ther 6:e1331193. https://doi.org/10.1080/2162402X.2017.1331193

    Article  Google Scholar 

  112. Woldemeskel M, Hawkins I, Whittington L (2017) Ki-67 protein expression and tumor associated inflammatory cells (macrophages and mast cells) in canine colorectal carcinoma. BMC Vet Res 13. https://doi.org/10.1186/s12917-017-1030-7

  113. Kim Y, Wen X, Bae JM et al (2018) The distribution of intratumoral macrophages correlates with molecular phenotypes and impacts prognosis in colorectal carcinoma. Histopathology 73:663–671. https://doi.org/10.1111/his.13674

    Article  PubMed  Google Scholar 

  114. Wang K, Shen T, Siegal GP et al (2017) The CD4/CD8 ratio of tumor-infiltrating lymphocytes at the tumor-host interface has prognostic value in triple-negative breast cancer. Hum Pathol 69:110–117. https://doi.org/10.1016/j.humpath.2017.09.012

    Article  CAS  PubMed  Google Scholar 

  115. Pockaj BA, Basu GD, Pathangey et al (2004) Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol 11(3):328–339

    Article  PubMed  Google Scholar 

  116. Zhang G, Zhang W, Li B et al (2017) MicroRNA-200c and microRNA-141 are regulated by a FOXP3-KAT2B axis and associated with tumor metastasis in breast cancer. Breast Cancer Res BCR 19(1):73. https://doi.org/10.1186/s13058-017-0858-x

    Article  CAS  PubMed  Google Scholar 

  117. Maekawa N, Konnai S, Takagi S et al (2017) A canine chimeric monoclonal antibody targeting PD-L1 and its clinical efficacy in canine oral malignant melanoma or undifferentiated sarcoma. Sci Rep 7. https://doi.org/10.1038/s41598-017-09444-2

  118. Wong RM, Scotland RR, Lau RL et al (2007) Programmed death-1 blockade enhances expansion and functional capacity of human melanoma antigen-specific CTLs. Int Immunol 19(10):1223–1234. https://doi.org/10.1093/intimm/dxm091

    Article  CAS  PubMed  Google Scholar 

  119. Mao Y, Poschke I, Wennerberg E et al (2013) Melanoma-educated CD14+ cells acquire a myeloid-derived suppressor cell phenotype through COX-2-dependent mechanisms. Cancer Res 73(13):3877–3887. https://doi.org/10.1158/0008-5472.CAN-12-4115

    Article  CAS  PubMed  Google Scholar 

  120. Withers SS, York D, Choi JW et al (2019) Metastatic immune infiltrates correlate with those of the primary tumour in canine osteosarcoma. Vet Comp Oncol 17(3):242–252. https://doi.org/10.1111/vco.12459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Biller BJ, Guth A, Burton JH, Dow SW (2010) Decreased ratio of CD8+ T cells to regulatory T cells associated with decreased survival in dogs with osteosarcoma. J Vet Intern Med 24:1118–1123. https://doi.org/10.1111/j.1939-1676.2010.0557.x

    Article  CAS  PubMed  Google Scholar 

  122. Koirala P, Roth ME, Gill J et al (2016) Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma. Sci Rep 6:30093. https://doi.org/10.1038/srep30093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu MX, Liu QY, Liu Y et al (2019) Interleukin-35 suppresses antitumor activity of circulating CD8(+) T cells in osteosarcoma patients. Connect Tissue Res 60(4):367–375. https://doi.org/10.1080/03008207.2018.1552267

    Article  CAS  PubMed  Google Scholar 

  124. Seager RJ, Hajal C, Spill F et al (2017) Dynamic interplay between tumour, stroma and immune system can drive or prevent tumour progression. Converg Sci Phys Oncol 3. https://doi.org/10.1088/2057-1739/AA7E86

  125. Gonzalez H, Hagerling C, Werb Z (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 32:1267–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. DeNardo DG, Coussens LM (2007) Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 9:212

    Google Scholar 

  127. Martin F, Apetoh L, Ghiringhelli F (2012) Controversies on the role of Th17 in cancer: a TGF-β-dependent immunosuppressive activity? Trends Mol Med 18:742–749

    Article  CAS  PubMed  Google Scholar 

  128. Ye J, Livergood RS, Peng G (2013) The role and regulation of human Th17 cells in tumor immunity. Am J Pathol 182:10–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sakaguchi S, Wing K, Onishi Y et al Regulatory T cells: how do they suppress immune responses? Int Immunol 21:1105–1111. https://doi.org/10.1093/intimm/dxp095

  130. Tanchot C, Terme M, Pere H et al (2013) Tumor-infiltrating regulatory T cells: phenotype, role, mechanism of expansion in situ and clinical significance. Cancer Microenviron 6:147–157. https://doi.org/10.1007/s12307-012-0122-y

    Article  CAS  PubMed  Google Scholar 

  131. Thommen DS, Schumacher TN (2018) T Cell Dysfunction in Cancer. Cancer Cell 33:547–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gupta S, Joshi K, Wig JD, Arora SK (2007) Intratumoral FOXP3 expression in infiltrating breast carcinoma: its association with clinicopathologic parameters and angiogenesis. Acta Oncol (Madr) 46:792–797. https://doi.org/10.1080/02841860701233443

    Article  CAS  Google Scholar 

  133. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tanaka A, Sakaguchi S (2017) Regulatory T cells in cancer immunotherapy. Cell Res 27:109–118

    Article  CAS  PubMed  Google Scholar 

  135. Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Snyder A, Makarov V, Merghoub T et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199. https://doi.org/10.1056/NEJMoa1406498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Böger C, Behrens HM, Krüger S, Röcken C (2017) The novel negative checkpoint regulator VISTA is expressed in gastric carcinoma and associated with PD-L1/PD-1: a future perspective for a combined gastric cancer therapy? Oncoimmunology 6. https://doi.org/10.1080/2162402X.2017.1293215

  138. Cogdill AP, Andrews MC, Wargo JA (2017) Hallmarks of response to immune checkpoint blockade. Br J Cancer 117:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  139. Leffers N, Gooden MJM, De Jong RA et al (2009) Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol Immunother 58:449–459. https://doi.org/10.1007/s00262-008-0583-5

    Article  PubMed  Google Scholar 

  140. MI Carvalho, I Pires, J Prada, FL Queiroga (2014) A role for T-lymphocytes in human breast cancer and in canine mammary tumors. Biomed Res Int 2014. https://doi.org/10.1155/2014/130894

  141. Baker K, Lachapelle J, Zlobec I et al (2011) Prognostic significance of CD8+ T lymphocytes in breast cancer depends upon both oestrogen receptor status and histological grade. Histopathology 58:1107–1116. https://doi.org/10.1111/j.1365-2559.2011.03846.x

    Article  PubMed  Google Scholar 

  142. Ferrer L, Fondevila D, Rabanal R et al (1993) Immunohistochemical detection of cd3 antigen (pan T marker) in canine lymphomas. J Vet Diagnostic Investig 5:616–620. https://doi.org/10.1177/104063879300500420

    Article  CAS  Google Scholar 

  143. Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(80):1960–1964. https://doi.org/10.1126/science.1129139

    Article  CAS  PubMed  Google Scholar 

  144. Yuan XL, Chen L, Li MX et al (2010) Elevated expression of Foxp3 in tumor-infiltrating Treg cells suppresses T-cell proliferation and contributes to gastric cancer progression in a COX-2-dependent manner. Clin Immunol 134:277–288. https://doi.org/10.1016/j.clim.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  145. Wang X, Lang M, Zhao T et al (2017) Cancer-FOXP3 directly activated CCL5 to recruit FOXP3 + Treg cells in pancreatic ductal adenocarcinoma. Oncogene 36:3048–3058. https://doi.org/10.1038/onc.2016.458

    Article  CAS  PubMed  Google Scholar 

  146. Horiuchi Y, Hanazawa A, Nakajima Y et al (2007) T-helper (Th) 1/ Th2 imbalance in the peripheral blood of dogs with malignant tumor. Microbiol Immunol 51:1135–1138. https://doi.org/10.1111/j.1348-0421.2007.tb03999.x

    Article  CAS  PubMed  Google Scholar 

  147. Marcinowska A, Constantino-Casas F, Williams T et al (2017) T lymphocytes in histiocytic sarcomas of flat-coated retriever dogs. Vet Pathol 54:605–610. https://doi.org/10.1177/0300985817690208

    Article  CAS  PubMed  Google Scholar 

  148. Folkman J (1971) Tumor Angiogenesis: Therapeutic Implications. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  149. Mor F, Quintana FJ, Cohen IR (2004) Angiogenesis-inflammation cross-talk: vascular endothelial growth factor is secreted by activated T cells and induces Th1 polarization. J Immunol 172:4618–4623. https://doi.org/10.4049/jimmunol.172.7.4618

    Article  CAS  PubMed  Google Scholar 

  150. Batlle R, Andrés E, Gonzalez L et al (2019) Regulation of tumor angiogenesis and mesenchymal–endothelial transition by p38α through TGF-β and JNK signaling. Nat Commun 10. https://doi.org/10.1038/s41467-019-10946-y

  151. Shimizu K, Okita R, Saisho S et al (2017) Prognostic value of Cox-2 and PD-L1 expression and its relationship with tumor-infiltrating lymphocytes in resected lung adenocarcinoma. Cancer Manag Res 9:741–750. https://doi.org/10.2147/CMAR.S146897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Jiang R, Tang J, Chen Y et al (2017) The long noncoding RNA lnc-EGFR stimulates T-regulatory cells differentiation thus promoting hepatocellular carcinoma immune evasion. Nat Commun 8. https://doi.org/10.1038/ncomms15129

  153. Wiwanitkit V (2012) Combination of EGFR and COX-2 inhibitors in breast cancer patient. Tumour Biol 33:1261

    Article  PubMed  Google Scholar 

  154. Greenhough A, Smartt HJM, Moore AE et al (2009) The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30:377–386. https://doi.org/10.1093/carcin/bgp014

    Article  CAS  PubMed  Google Scholar 

  155. Markosyan N, Chen EP, Evans RA et al (2013) Mammary carcinoma cell derived cyclooxygenase 2 suppresses tumor immune surveillance by enhancing intratumoral immune checkpoint activity. Breast Cancer Res 15. https://doi.org/10.1186/bcr3469

  156. Ray P, Krishnamoorthy N, Oriss TB, Ray A (2010) Signaling of c-kit in dendritic cells influences adaptive immunity. Ann N Y Acad Sci 1183:104–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Oriss TB, Krishnamoorthy N, Ray P, Ray A (2014) Dendritic cell c-kit signaling and adaptive immunity: implications for the upper airways. Curr Opin Allergy Clin Immunol 14:7–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Liang J, Wu YL, Chen BJ et al (2013) The C-Kit receptor-mediated signal transduction and tumor-related diseases. Int J Biol Sci 9:435–443

    Article  PubMed  PubMed Central  Google Scholar 

  159. Carvalho MI, Silva-Carvalho R, Pires I et al (2016) A comparative approach of tumor-associated inflammation in mammary cancer between humans and dogs. Biomed Res Int 2016. https://doi.org/10.1155/2016/4917387

  160. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    Article  CAS  PubMed  Google Scholar 

  161. DeNardo DG, Barreto JB, Andreu P et al (2009) CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16:91–102. https://doi.org/10.1016/j.ccr.2009.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Juric V, O’Sullivan C, Stefanutti E et al (2018) MMP-9 inhibition promotes anti-tumor immunity through disruption of biochemical and physical barriers to T-cell trafficking to tumors. PLoS One 13. https://doi.org/10.1371/journal.pone.0207255

  163. Marin-Acevedo JA, Soyano AE, Dholaria B et al (2018) Cancer immunotherapy beyond immune checkpoint inhibitors. J Hematol Oncol 11:8

    Google Scholar 

  164. Addissie S, Klingemann H (2018) Cellular immunotherapy of canine cancer. Vet Sci 5

    Google Scholar 

  165. Shang B, Liu Y, Jiang SJ, Liu Y (2015) Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 5. https://doi.org/10.1038/srep15179

  166. Wang H, Franco F, Ho PC (2017) Metabolic regulation of Tregs in cancer: opportunities for immunotherapy. Trends in Cancer 3:583–592

    Article  CAS  PubMed  Google Scholar 

  167. Moreno Ayala MA, Li Z, DuPage M (2019) Treg programming and therapeutic reprogramming in cancer. Immunology 157:198–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Shaw RJ (2006) Glucose metabolism and cancer. Curr Opin Cell Biol 18:598–608

    Article  CAS  PubMed  Google Scholar 

  169. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  CAS  PubMed  Google Scholar 

  170. Kim HH, Joo H, Kim T, et al (2009) The mitochondrial Warburg effect: a cancer enigma. IBC, 1(2):7, 1–7. https://doi.org/10.4051/ibc.2009.2.0007

  171. Vander Heiden MG (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10:671–684

    Article  CAS  PubMed  Google Scholar 

  172. Gillies RJ, Robey I, Gatenby RA (2008) Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 49:24S–42S

    Google Scholar 

  173. de Saedeleer CJ, Copetti T, Porporato PE et al (2012) Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells. PLoS One 7. https://doi.org/10.1371/journal.pone.0046571

  174. Heiden MGV, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(80):1029–1033

    Article  Google Scholar 

  175. Ganapathy V, Thangaraju M, Prasad PD (2009) Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther 121:29–40

    Article  CAS  PubMed  Google Scholar 

  176. Granchi C, Minutolo F (2012) Anticancer agents that counteract tumor glycolysis. ChemMedChem 7:1318–1350. https://doi.org/10.1002/cmdc.201200176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sonveaux P, Végran F, Schroeder T et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942. https://doi.org/10.1172/JCI36843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8:705–713

    Article  CAS  PubMed  Google Scholar 

  179. Casazza A, Di Conza G, Wenes M et al (2014) Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene 33:1743–1754

    Article  CAS  PubMed  Google Scholar 

  180. Nagasawa H (2011) Pathophysiological response to hypoxia – from the molecular mechanisms of malady to drug discovery: drug discovery for targeting the tumor microenvironment. J Pharmacol Sci 115:446–452

    Article  CAS  PubMed  Google Scholar 

  181. Pinheiro C, Longatto-Filho A, Azevedo-Silva J et al (2012) Role of monocarboxylate transporters in human cancers: state of the art. J Bioenerg Biomembr 44:127–139

    Article  CAS  PubMed  Google Scholar 

  182. Riera-Domingo C, Audigé A, Granja S et al (2020) Immunity, hypoxia, and metabolism–the ménage à trois of cancer: implications for immunotherapy. Physiol Rev 100:1–102. https://doi.org/10.1152/physrev.00018.2019

    Article  CAS  PubMed  Google Scholar 

  183. Palazon A, Goldrath AW, Nizet V, Johnson RS (2014) HIF transcription factors, inflammation, and immunity. Immunity 41:518–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hirschhaeuser F, Sattler UGA, Mueller-Klieser W (2011) Lactate: A metabolic key player in cancer. Cancer Res 71:6921–6925

    Article  CAS  PubMed  Google Scholar 

  185. Morrot A, da Fonseca LM, Salustiano EJ et al (2018) Metabolic symbiosis and immunomodulation: How tumor cell-derived lactate may disturb innate and adaptive immune responses. Front Oncol 8:81

    Google Scholar 

  186. Kennedy KM, Dewhirst MW (2010) Tumor metabolism of lactate: The influence and therapeutic potential for MCT and CD147 regulation. Future Oncol 6:127–148

    Article  CAS  PubMed  Google Scholar 

  187. Shimoyama Y, Kirat D, Akihara Y et al (2007) Expression of monocarboxylate transporter 1 (MCT1) in the dog intestine. J Vet Med Sci 69:599–604. https://doi.org/10.1292/jvms.69.599

    Article  CAS  PubMed  Google Scholar 

  188. Shimoyama Y, Akihara Y, Kirat D et al (2007) Expression of monocarboxylate transporter 1 in oral and ocular canine melanocytic tumors. Vet Pathol 44:449–457. https://doi.org/10.1354/vp.44-4-449

    Article  CAS  PubMed  Google Scholar 

  189. Walenta S, Mueller-Klieser WF (2004) Lactate: Mirror and motor of tumor malignancy. Semin Radiat Oncol 14:267–274. https://doi.org/10.1016/j.semradonc.2004.04.004

    Article  PubMed  Google Scholar 

  190. Singer K, Gottfried E, Kreutz M, Mackensen A (2011) Suppression of T-cell responses by tumor metabolites. Cancer Immunol Immunother 60:425–431

    Article  CAS  PubMed  Google Scholar 

  191. Fischer K, Hoffmann P, Voelkl S et al (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109:3812–3819. https://doi.org/10.1182/blood-2006-07-035972

    Article  CAS  PubMed  Google Scholar 

  192. Singer K, Kastenberger M, Gottfried E et al (2011) Warburg phenotype in renal cell carcinoma: high expression of glucose-transporter 1 (GLUT-1) correlates with low CD8+ T-cell infiltration in the tumor. Int J Cancer 128:2085–2095. https://doi.org/10.1002/ijc.25543

    Article  CAS  PubMed  Google Scholar 

  193. Mendler AN, Hu B, Prinz PU et al (2012) Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int J Cancer 131:633–640. https://doi.org/10.1002/ijc.26410

    Article  CAS  PubMed  Google Scholar 

  194. Michalek RD, Gerriets VA, Jacobs SR et al (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4 + T cell subsets. J Immunol 186:3299–3303. https://doi.org/10.4049/jimmunol.1003613

    Article  CAS  PubMed  Google Scholar 

  195. Gottfried E, Kunz-Schughart LA, Ebner S et al (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107:2013–2021. https://doi.org/10.1182/blood-2005-05-1795

    Article  CAS  PubMed  Google Scholar 

  196. Shime H, Yabu M, Akazawa T et al (2008) Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. J Immunol 180:7175–7183. https://doi.org/10.4049/jimmunol.180.11.7175

    Article  CAS  PubMed  Google Scholar 

  197. Langowski JL, Zhang X, Wu L et al (2006) IL-23 promotes tumour incidence and growth. Nature 442:461–465. https://doi.org/10.1038/nature04808

    Article  CAS  PubMed  Google Scholar 

  198. Dietl K, Renner K, Dettmer K et al (2010) Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunol 184:1200–1209. https://doi.org/10.4049/jimmunol.0902584

    Article  CAS  PubMed  Google Scholar 

  199. Goetze K, Walenta S, Ksiazkiewicz M et al (2011) Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol 39:453–463. https://doi.org/10.3892/ijo.2011.1055

    Article  CAS  PubMed  Google Scholar 

  200. Colegio OR, Chu NQ, Szabo AL et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559–563. https://doi.org/10.1038/nature13490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Husain Z, Huang Y, Seth P, Sukhatme VP (2013) Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol 191:1486–1495. https://doi.org/10.4049/jimmunol.1202702

    Article  CAS  PubMed  Google Scholar 

  202. Domblides C, Lartigue L, Faustin B (2019) Control of the antitumor immune response by cancer metabolism. Cell 8:104. https://doi.org/10.3390/cells8020104

    Article  CAS  Google Scholar 

  203. Sahai E (2005) Mechanisms of cancer cell invasion. Curr Opin Genet Dev 15:87–96

    Article  CAS  PubMed  Google Scholar 

  204. Yamaguchi H, Wyckoff J, Condeelis J (2005) Cell migration in tumors. Curr Opin Cell Biol 17:559–564

    Article  CAS  PubMed  Google Scholar 

  205. Elia I, Doglioni G, Fendt SM (2018) Metabolic hallmarks of metastasis formation. Trends Cell Biol 28:673–684

    Article  CAS  PubMed  Google Scholar 

  206. de la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO et al (2019) Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front Oncol 9:1143

    Google Scholar 

  207. Anderson M, Marayati R, Moffitt R, Yeh JJ (2017) Hexokinase 2 promotes tumor growth and metastasis by regulating lactate production in pancreatic cancer. Oncotarget 8:56081–56094. https://doi.org/10.18632/oncotarget.9760

    Article  PubMed  Google Scholar 

  208. Botzer LE, Maman S, Sagi-Assif O et al (2016) Hexokinase 2 is a determinant of neuroblastoma metastasis. Br J Cancer 114:759–766. https://doi.org/10.1038/bjc.2016.26

    Article  CAS  PubMed  Google Scholar 

  209. Qian Z, Hu W, Lv Z et al (2020) PKM2 upregulation promotes malignancy and indicates poor prognosis for intrahepatic cholangiocarcinoma. Clin Res Hepatol Gastroenterol 44:162–173. https://doi.org/10.1016/j.clinre.2019.06.008

    Article  CAS  PubMed  Google Scholar 

  210. Zhou CF, Li XB, Sun H et al (2012) Pyruvate kinase type M2 is upregulated in colorectal cancer and promotes proliferation and migration of colon cancer cells. IUBMB Life 64:775–782. https://doi.org/10.1002/iub.1066

    Article  CAS  PubMed  Google Scholar 

  211. Bonuccelli G, Tsirigos A, Whitaker-Menezes D et al (2010) Ketones and lactate “fuel” tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9:3506–3514. https://doi.org/10.4161/cc.9.17.12731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Payen VL, Porporato PE, Baselet B, Sonveaux P (2016) Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway. Cell Mol Life Sci 73:1333–1348

    Article  CAS  PubMed  Google Scholar 

  213. Vlachostergios PJ, Oikonomou KG, Gibilaro E, Apergis G (2015) Elevated lactic acid is a negative prognostic factor in metastatic lung cancer. Cancer Biomark 15:725–734. https://doi.org/10.3233/CBM-150514

    Article  CAS  PubMed  Google Scholar 

  214. Walenta S, Wetterling M, Lehrke M et al (2000) Cancer Research. Cancer Res 55:4757–4759

    Google Scholar 

  215. Brizel DM, Schroeder T, Scher RL et al (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 51:349–353. https://doi.org/10.1016/S0360-3016(01)01630-3

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felisbina L. Queiroga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carvalho, M.I. et al. (2021). The Dog as a Model to Study the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1329. Springer, Cham. https://doi.org/10.1007/978-3-030-73119-9_7

Download citation

Publish with us

Policies and ethics