Skip to main content

Upcycling of Silicon Solar Cells: What Are the Options?

  • Conference paper
  • First Online:
State-of-the-Art Upcycling Research and Practice

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

  • 765 Accesses

Abstract

Solar power is widely recognised as a key clean energy technology which can help to replace the global reliance on fossil fuel energy sources. The rate at which photovoltaics are being deployed globally has increased approximately exponentially in recent years, with the vast majority of these devices being made from silicon. Whilst the number of solar modules reaching their end-of-life is relatively modest at present, it is rising and will increase significantly over the coming decade. As the number of silicon modules reaching their end-of-life rises, the issue of reutilisation of these cells has gained attention from scientists, governments and industries. Considering the cost of production, high embedded energy, potential significant volume of waste and scarcity of resource of certain cell parts, end-of-life silicon cells should be upcycled where possible. This chapter explores different options for upcycling (more specifically advanced or improved forms of recycling and reuse) of silicon solar cells at their end-of-life with the ultimate goal of contributing to reducing their post-use negative environmental impact whilst simultaneously benefiting the economy. This work discusses a range of theoretical options for successful upcycling of silicon devices through a review of the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allwood, J. M., Cullen, J. M., Carruth, M. A., Cooper, D. R., McBrien, M., Milford, R. L., et al. (2012). Sustainable materials: With both eyes open. Cambridge: UIT Cambridge Limited.

    Google Scholar 

  • Ardente, F., Latunussa, C. E. L., & Blengini, G. A. (2019). Resource efficient recovery of critical and precious metals from waste silicon PV panel recycling. Waste Management, 91, 156–167.

    Article  Google Scholar 

  • Azeumo, M. F., Conte, G., Ippolito, N. M., Medici, F., Piga, L., & Santilli, S. (2019). Photovoltaic module recycling, a physical and a chemical recovery process. Solar Energy Materials and Solar Cells, 193, 314–319.

    Article  Google Scholar 

  • Bohland, J. R., & Anisimov, I. (1997). Possibility of recycling silicon PV modules. Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference 1997. IEEE. https://ieeexplore.ieee.org/abstract/document/654298?casa_token=JajtETtpk0gAAAAA:cQYKAQqeCfXiCUcJGHV7P0Ave568CgRt13Yn-QFLphL-Llwge8GXMmUlXr0FKWZ6yLn5lwpm. Accessed 1 January 2021.

  • BP (2019). BP statistical review of world energy 2019, 68th edition. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html. Accessed 6 August 2019.

  • Braungart, M., & McDonough, W. (2013). The upcycle: Beyond sustainability—designing for abundance. New York: North Point Press.

    Google Scholar 

  • Cucchiella, F., D’Adamo, I., & Rosa, P. (2015). End-of-Life of used photovoltaic modules: A financial analysis. Renewable and Sustainable Energy Reviews, 47, 552–561.

    Article  Google Scholar 

  • Deng, R., Chang, N. L., Ouyang, Z., & Chong, C. M. (2019). A techno-economic review of silicon photovoltaic module recycling. Renewable and Sustainable Energy Reviews, 109, 532–550.

    Article  Google Scholar 

  • Dias, P., Javimczik, S., Benevit, M., Veit, H., & Bernardes, A. M. (2016). Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules. Waste Management, 57, 220–225.

    Article  Google Scholar 

  • Dong, A., Zhang, L., & Damoah, L. N. W. (2011). Beneficial and technological analysis for the recycling of solar grade silicon wastes. The Journal of The Minerals, Metals & Materials Society, 63(1), 23–27.

    Article  Google Scholar 

  • Green, M. A. (2000). Future of crystalline silicon solar cells. Progress in Photovoltaics: Research and Applications, 8(1), 127–139.

    Article  Google Scholar 

  • Green, M. A. (2009). The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Progress in Photovoltaics: Research and Applications, 17, 183–189.

    Article  Google Scholar 

  • Haque, A., Bharath, K. V. S., Khan, M. A., Khan, I., & Jaffery, Z. A. (2019). Fault diagnosis of photovoltaic modules. Energy Science and Engineering, 7(3), 622–644.

    Article  Google Scholar 

  • International Energy Agency. (2020). Solar PV. https://www.iea.org/reports/solar-pv. Accessed 1 January 2021.

  • Klugmann-Radziemska, E., & Ostrowski, P. (2010). Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renewable Energy, 35(8), 1751–1759.

    Article  Google Scholar 

  • Klugmann-Radziemska, E., Ostrowski, P., Drabczyk, K., Panek, P., & Szkodo, M. (2010). Experimental validation of crystalline silicon solar cells recycling by thermal and chemical methods. Solar Energy Materials and Solar Cells, 94(12), 2275–2282.

    Article  Google Scholar 

  • Kong, J., Xing, P., Liu, Y., Wang, J., Jin, X., Feng, Z., et al. (2019). An economical approach for the recycling of high-purity silicon from diamond-wire saw Kerf Slurry waste. Silicon, 11(1), 367–376.

    Article  Google Scholar 

  • Latunussa, C. E. L., Ardente, F., Blengini, G. A., & Mancini, L. (2016). Life cycle assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Solar Energy Materials and Solar Cells, 156, 101–111.

    Article  Google Scholar 

  • Liu, Y., Kong, J., Zhuang, Y., Xing, P., Yin, H., & Luo, X. (2019). Recycling high purity silicon from solar grade silicon cutting slurry waste by carbothermic reduction in the electric arc furnace. Journal of Cleaner Production, 224, 709–718.

    Article  Google Scholar 

  • Padoan, F. C. S. M., Altimari, P., & Pagnanelli, F. (2019). Recycling of end of life photovoltaic panels: A chemical prospective on process development. Solar Energy, 177, 746–761.

    Article  Google Scholar 

  • Park, J., & Park, N. (2014). Wet etching processes for recycling crystalline silicon solar cells from end-of-life photovoltaic modules. RSC Advances, 4(66), 34823–34829.

    Article  Google Scholar 

  • Roy, A. B., Dhar, A., Choudhuri, M., Das, S., Hossain, S. M., & Kundu, A. (2016). Black silicon solar cell: Analysis optimization and evolution towards a thinner and flexible future. Nanotechnology, 27(30), 1–12.

    Article  Google Scholar 

  • Skoczek, A., Sample, T., & Dunlop, E. D. (2009). The results of performance measurements of field-aged crystalline silicon photovoltaic modules. Progress in Photovoltaics: Research and Applications, 17, 227–240.

    Article  Google Scholar 

  • Sung, K. (2017). Sustainable production and consumption by upcycling: Understanding and scaling-up Niche environmentally significant behaviour (PhD thesis). Nottingham: Nottingham Trent University.

    Google Scholar 

  • Sung, K., Cooper, T., & Kettley, S. (2019). Developing interventions for scaling up UK upcycling. Energies, 12(14), 2778.

    Google Scholar 

  • Tao, J., & Yu, S. (2015). Review on feasible recycling pathways and technologies of solar photovoltaic modules. Solar Energy Materials and Solar Cells, 141, 108–124.

    Article  Google Scholar 

  • Tohoda, S., Fujishima, D., Yano, A., Ogane, A., Matsuyama, K., Nakamura, Y., et al. (2012). Future directions for higher-efficiency HIT solar cells using a Thin Silicon Wafer. Journal of Non-Crystalline Solids, 358(17), 2219–2222.

    Article  Google Scholar 

  • Wei, D., Gao, S., Kong, J., Jin, X., Jiang, S., Zhou, S., et al. (2020). Recycling silicon from silicon cutting waste by Al–Si alloying. Journal of Cleaner Production, 251, 119647.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Isherwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Isherwood, P., Sung, K. (2021). Upcycling of Silicon Solar Cells: What Are the Options?. In: Sung, K., Singh, J., Bridgens, B. (eds) State-of-the-Art Upcycling Research and Practice . Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-72640-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72640-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72639-3

  • Online ISBN: 978-3-030-72640-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics