Skip to main content

The Role of Native Oxides on the Corrosion Mechanism of Laves Phases in Mg–Al–Ca Composites

  • Conference paper
  • First Online:
  • 601 Accesses

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Magnesium–aluminum–calcium composites are characterized by thermally stable Laves phases, which enable high-temperature material applications. Nevertheless, immersing the material into an electrolyte causes an increased corrosion rate as a consequence of micro-galvanic effects among the Laves phases and the matrix. The Volta-potential difference determined under atmospheric conditions on a freshly polished surface using Scanning Kelvin Probe Force Microscopy (SKPFM) is a valid measure for the micro-galvanic coupling and the dynamic growth kinetics of a native oxide film. In the present study, the time-dependent native oxide film formation of magnesium–aluminum–calcium alloys is analyzed via in situ SKPFM measurements. An inhomogeneous evolution of the Volta-potential on the Laves phases compared to the matrix indicates heterogeneous native oxide formation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fatmi M, Djemli A, Ouali A, Chihi T, Ghebouli MA, Belhouchet H (2018) Heat treatment and kinetics of Precipitation of β-Mg17Al12 phase in AZ91 Alloy. Results Phys.

    Google Scholar 

  2. Mathur HN, Maier-Kiener V, Korte-Kerzel S (2016) Deformation in the γ-Mg17Al12 phase at 25–278 °C. Acta Mater.

    Google Scholar 

  3. Suzuki A, Saddock ND, Jones JW, Pollock TM (2005) Solidification paths and eutectic intermetallic phases in Mg-Al-Ca ternary alloys. Acta Mater. 53:2823–2834

    Article  CAS  Google Scholar 

  4. Zhang L, Deng K, Nie K, Xu F, Su K, Liang W (2015) Microstructures and mechanical properties of Mg-Al-Ca alloys affected by Ca/Al ratio. Mater. Sci. Eng. A 636:279–288

    Article  CAS  Google Scholar 

  5. Tiwari S, Balasubramaniam R, Gupta M (2007) Corrosion behavior of SiC reinforced magnesium composites. Corros, Sci

    Book  Google Scholar 

  6. Nordlien JH (1995) Morphology and Structure of Oxide Films Formed on Magnesium by Exposure to Air and Water. J. Electrochem. Soc. 142:3320

    Article  CAS  Google Scholar 

  7. Nordlien JH (1996) Morphology and Structure of Oxide Films Formed on MgAl Alloys by Exposure to Air and Water. J. Electrochem. Soc. 143:2564

    Article  CAS  Google Scholar 

  8. Esmaily M, Svensson JE, Fajardo S, Birbilis N, Frankel GS, Virtanen S, Arrabal R, Thomas S, Johansson LG (2017) Fundamentals and advances in magnesium alloy corrosion. Prog. Mater, Sci

    Book  Google Scholar 

  9. Cabrera N, Mott NF (1949) Theory of the oxidation of metals. Rep. Prog. Phys. 12:163–184

    Article  CAS  Google Scholar 

  10. Do T, Splinter SJ, Chen C, Mcintyre NS (1997) The oxidation kinetics of Mg and Al surfaces studied by AES and XPS. Surf Sci 387:192–198

    Article  CAS  Google Scholar 

  11. Santamaria M, Di Quarto F, Zanna S, Marcus P (2007) Initial surface film on magnesium metal: A characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS). Electrochim. Acta 53:1314–1324

    Article  CAS  Google Scholar 

  12. Feliu S, Galván JC, Pardo A, Merino MC (2010) Native air-formed oxide film and its effect on magnesium alloys corrosion. Tocorrj. 3:80–90

    Article  CAS  Google Scholar 

  13. Souda R, Hwang Y, Aizawa T, Hayami W, Oyoshi K, Hishita S (1997) Ca segregation at the MgO(001) surface studied by ion scattering spectroscopy. Surf Sci. 387:136–141

    Article  CAS  Google Scholar 

  14. Revilla RI, Terryn H, Graeve I (2018) On the use of SKPFM for in situ studies of the repassivation of the native oxide film on aluminium in air. Electrochem. Commun. 93:162–165

    Article  CAS  Google Scholar 

  15. Örnek C, Leygraf C, Pan J (2020) Real-time corrosion monitoring of aluminum alloy using scanning kelvin probe force microscopy. J. Electrochem. Soc. 167:81502

    Article  Google Scholar 

Download references

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)-Project-ID 409476157-SFB 1394 and INST 256/455-1 FUGG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Zander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Felten, M., Nowak, J., Grünewald, P., Schäfer, F., Motz, C., Zander, D. (2021). The Role of Native Oxides on the Corrosion Mechanism of Laves Phases in Mg–Al–Ca Composites. In: Luo, A., et al. Magnesium 2021. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-72432-0_22

Download citation

Publish with us

Policies and ethics