Skip to main content

Classification and Segmentation Models for Hyperspectral Imaging - An Overview

  • Conference paper
  • First Online:
Intelligent Technologies and Applications (INTAP 2020)

Abstract

An advancement in Hyperspectral Imaging (HI) technology is creating important attraction among the researchers to develop better classification techniques. This technology is well known for its high spatial and spectral information due to which the discrimination of materials is much more accurate and efficient. The useful information is extracted in Hyperspectral Imaging technology after applying it in agriculture, biomedical, and disaster management studies. A review comparison has been carried out for air borne images using hyperspectral acquisition hardware for classification as well as segmentation purpose. Numerous approaches that have been focused for implementation namely semi-supervised technique used for hyperspectral imaging using active learning and multinomial logistic regression, Generalized Composite Kernels (GCKs) classification framework, classification of spectral-spatial based data on loopy belief propagation (LBP), multiple feature learning of HI classification, and semi-supervised GCKs with classification accuracy on AVIRIS dataset (59.97%, 92.89%, 81.45%, 75.84%, and 95.50) and segmentation accuracies using α-expansion method as (73.27%, 93.57%, 92.86%, 91.73% and 98.31), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson, W.R., Wilson, D.W., Fink, W., Humayun, M., Bearman, G.: Snapshot hyperspectral imaging in ophthalmology. BIOMEDO 12(1), 014036–014037 (2007)

    Google Scholar 

  2. Thenkabail, P.S., Lyon, J.G.: Hyperspectral Remote Sensing of Vegetation. CRC Press (2016)

    Google Scholar 

  3. Pierna, J., Baeten, V., Renier, A.M., Cogdill, R., Dardenne, P.: Combination of support vector machines (SVM) and near-infrared (NIR) imaging spectroscopy for the detection of meat and bone meal (MBM) in compound feeds. J. Chemom. 18(7–8), 341–349 (2004)

    Article  Google Scholar 

  4. ElMasry, G., Kamruzzaman, M., Sun, D.-W., Allen, P.: Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review. Crit. Rev. Food Sci. Nutr. 52(11), 999–1023 (2012)

    Article  Google Scholar 

  5. Tilling, A.K., O’Leary, G., Ferwerda, J., Jones, S., Fitzgerald, G., Belford, R.: Remote sensing to detect nitrogen and water stress in wheat, p. 17. The Australian Society of Agronomy (2006)

    Google Scholar 

  6. Lacar, F., Lewis, M., Grierson, I.: Use of hyperspectral imagery for mapping grape varieties in the Barossa Valley, South Australia. In: Geoscience and Remote Sensing Symposium, 2001 IGARSS'01 IEEE 2001 International. IEEE (2001), pp. 2875–2877

    Google Scholar 

  7. Shanahan, J.F., Schepers, J.S., Francis, D.D., Varvel, G.E., Wilhelm, W.W., Tringe, J.M., et al.: Use of remote-sensing imagery to estimate corn grain yield. Agron. J. 93(3), 583–589 (2001)

    Article  Google Scholar 

  8. Li, H., Liu, W., Dong, B., Kaluzny, J.V., Fawzi, A.A., Zhang, H.F.: Snapshot hyperspectral retinal imaging using compact spectral resolving detector array. J. Biophotonics 10(6–7), 830–839 (2017)

    Article  Google Scholar 

  9. Shahidi, A., Patel, S., Flanagan, J., Hudson, C.: Regional variation in human retinal vessel oxygen saturation. Exp. Eye Res. 113, 143–147 (2013)

    Article  Google Scholar 

  10. Dacal-Nieto, A., Formella, A., Carrión, P., Vazquez-Fernandez, E., Fernández-Delgado, M.: Common scab detection on potatoes using an infrared hyperspectral imaging system. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011. LNCS, vol. 6979, pp. 303–312. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24088-1_32

    Chapter  Google Scholar 

  11. ElMasry, G., Sun, D.-W., Allen, P.: Non-destructive determination of water-holding capacity in fresh beef by using NIR hyperspectral imaging. Food Res. Int. 44(9), 2624–2633 (2011). https://doi.org/10.1016/j.foodres.2011.05.001

    Article  Google Scholar 

  12. van der Werff, H.M.A.: Knowledge-based remote sensing of complex objects: recognition of spectral and spatial patterns resulting from natural hydrocarbon seepages. Universiteit Utrecht (2006)

    Google Scholar 

  13. Holma, H.: Thermische Hyperspektralbildgebung im langwelligen Infrarot. Photonik (2011)

    Google Scholar 

  14. Rickard, L.J., Basedow, R.W., Zalewski, E.F., Silverglate, P.R., Landers, M.: HYDICE: an airborne system for hyperspectral imaging. In: Optical Engineering and Photonics in Aerospace Sensing: International Society for Optics and Photonics, pp. 173–179 (1993)

    Google Scholar 

  15. Hege, E.K., O'Connell, D., Johnson, W., Basty, S., Dereniak, E.L.: Hyperspectral imaging for astronomy and space surviellance. In: Optical Science and Technology, SPIE’s 48th Annual Meeting: International Society for Optics and Photonics, pp. 380–391 (2004)

    Google Scholar 

  16. Rafert, B., Sellar, R.G., Holbert, E., Blatt, J.H., Tyler, D.W., Durham, S.E., et al.: Hyperspectral imaging Fourier transform spectrometers for astronomical and remote sensing observations. In: 1994 Symposium on Astronomical Telescopes & Instrumentation for the 21st Century: International Society for Optics and Photonics. pp. 338–349 (1994)

    Google Scholar 

  17. Fischer, C., Kakoulli, I.: Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications. Stud. Conserv. 51(sup1), 3–16 (2006)

    Article  Google Scholar 

  18. Zonios, G., Perelman, L.T., Backman, V., Manoharan, R., Fitzmaurice, M., Van Dam, J., et al.: Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo. Appl Opt. 38(31), 6628–6637 (1999). https://doi.org/10.1364/ao.38.006628

    Article  Google Scholar 

  19. Tuchin, V.V.: Editor’s Introduction: Optical Methods for Biomedical Diagnosis, pp. 1–15 (2016)

    Google Scholar 

  20. Calin, M.A., Parasca, S.V., Savastru, D., Manea, D.: Hyperspectral imaging in the medical field: present and future. Appl. Spectrosc. Rev. 49(6), 435–447 (2013). https://doi.org/10.1080/05704928.2013.838678

    Article  Google Scholar 

  21. Chang, C-I.: Hyperspectral Imaging: Techniques for Spectral Detection and Classification. Springer, New York (2003). https://doi.org/10.1007/978-1-4419-9170-6

  22. Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.: Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 101(3), 652–675 (2012)

    Article  Google Scholar 

  23. Goetz, A.F., Vane, G., Solomon, J.E., Rock, B.N.: Imaging spectrometry for earth remote sensing. Science 228(4704), 1147–1153 (1985)

    Article  Google Scholar 

  24. Thompson, D.R., Boardman, J.W., Eastwood, M.L., Green, R.O.: A large airborne survey of Earth’s visible-infrared spectral dimensionality. Opt. Express 25(8), 9186–9195 (2017)

    Article  Google Scholar 

  25. Ma, W., Gong, C., Hu, Y., Meng, P., Xu, F.: The Hughes phenomenon in hyperspectral classification based on the ground spectrum of grasslands in the region around Qinghai Lake. In: International Symposium on Photoelectronic Detection and Imaging 2013: Imaging Spectrometer Technologies and Applications: International Society for Optics and Photonics, p. 89101G (2013)

    Google Scholar 

  26. Li, J., Marpu, P.R., Plaza, A., Bioucas-Dias, J.M., Benediktsson, J.A.: Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 51(9), 4816–4829 (2013)

    Article  Google Scholar 

  27. Li, J., Bioucas-Dias, J.M., Plaza, A.: Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 48(11), 4085–4098 (2010)

    Google Scholar 

  28. Li, J., Huang, X., Gamba, P., Bioucas-Dias, J.M., Zhang, L., Benediktsson, J.A., et al.: Multiple feature learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 53(3), 1592–1606 (2014)

    Article  Google Scholar 

  29. Bruzzone, L., Chi, M., Marconcini, M.: A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Trans. Geosci. Remote Sens. 44(11), 3363–3373 (2006)

    Article  Google Scholar 

  30. Schölkopf, B., Smola, A.J., Bach, F.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press (2002)

    Google Scholar 

  31. Cao, F., Yang, Z., Ren, J., Ling, W.-K., Zhao, H., Marshall, S.: Extreme sparse multinomial logistic regression: a fast and robust framework for hyperspectral image classification. Remote Sensing. 9(12), 1255 (2017)

    Article  Google Scholar 

  32. Böhning, D.: Multinomial logistic regression algorithm. Ann. Inst. Stat. Math. 44(1), 197–200 (1992)

    Article  MATH  Google Scholar 

  33. Li, J., Bioucas-Dias, J.M., Plaza, A.: Spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields. IEEE Trans. Geosci. Remote Sens. 50(3), 809–823 (2011)

    Article  Google Scholar 

  34. Li, J., Bioucas-Dias, J.M., Plaza, A.: Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression. IEEE Geosci. Remote Sens. Lett. 10(2), 318–322 (2012)

    Google Scholar 

  35. Chapelle, O., Chi, M., Zien, A.: A continuation method for semi-supervised SVMs. In: Proceedings of the 23rd International Conference on Machine learning, pp. 185–92 (2006)

    Google Scholar 

  36. Mountrakis, G., Im, J., Ogole, C.: Support vector machines in remote sensing: a review. ISPRS J. Photogramm. Remote. Sens. 66(3), 247–259 (2011)

    Article  Google Scholar 

  37. Zappone, A., Di Renzo, M., Debbah, M.: Wireless networks design in the era of deep learning: model-based, AI-based, or both? IEEE Trans. Commun. 67(10), 7331–7376 (2019)

    Article  Google Scholar 

  38. Benediktsson, J.A., Palmason, J.A., Sveinsson, J.R.: Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)

    Article  Google Scholar 

  39. Pesaresi, M., Benediktsson, J.A.: A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 39(2), 309–320 (2001)

    Article  Google Scholar 

  40. Dalla Mura, M., Benediktsson, J.A., Waske, B., Bruzzone, L.: Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans. Geosci. Remote Sens. 48(10), 3747–3762 (2010)

    Article  Google Scholar 

  41. ElMasry, G., Sun, D-w.: Principles of hyperspectral imaging technology. In: Hyperspectral Imaging for Food Quality Analysis and Control, pp. 3–43. Elsevier (2010)

    Google Scholar 

  42. Lu, G., Fei, B.: Medical hyperspectral imaging: a review. BIOMEDO 19(1), 010901 (2014)

    Google Scholar 

  43. Li, F., Xu, L., Siva, P., Wong, A., Clausi, D.A.: Hyperspectral image classification with limited labeled training samples using enhanced ensemble learning and conditional random fields. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 8(6), 2427–2438 (2015)

    Article  Google Scholar 

  44. Tan, K., Wang, X., Zhu, J., Hu, J., Li, J.: A novel active learning approach for the classification of hyperspectral imagery using quasi-Newton multinomial logistic regression. Int. J. Remote Sens. 39(10), 3029–3054 (2018)

    Article  Google Scholar 

  45. Li, J., Bioucas-Dias, J.M., Plaza, A.: Spectral–spatial classification of hyperspectral data using loopy belief propagation and active learning. IEEE Trans. Geosci. Remote Sens. 51(2), 844–856 (2012)

    Article  Google Scholar 

  46. Shah, S.T.H., Javed, S.G., Majid, A., Shah, S.A.H., Qureshi, S.A.: Novel classification technique for hyperspectral imaging using multinomial logistic regression and morphological profiles with composite kernels. In: 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 419–424 (2019). https://doi.org/10.1109/IBCAST.2019.8667162

  47. Zhang, L., Wei, W., Tian, C., Li, F., Zhang, Y.: Exploring structured sparsity by a reweighted Laplace prior for hyperspectral compressive sensing. IEEE Trans. Image Process. 25(10), 4974–4988 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G., et al.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113, S110–S122 (2009)

    Article  Google Scholar 

  49. Li, J., Bioucas-Dias, J.M., Plaza, A.: Spectral–spatial classification of hyperspectral data using loopy belief propagation and active learning. IEEE Trans. Geosci. Remote Sens. 51(2), 844–856 (2013). https://doi.org/10.1109/TGRS.2012.2205263

    Article  Google Scholar 

  50. Tezuka, F., Namiki, T., Higashiiwai, H.: Observer variability in endometrial cytology using kappa statistics. J. Clin. Pathol. 45(4), 292–294 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahzad Ahmad Qureshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shah, S.T.H., Qureshi, S.A., Rehman, A.u., Shah, S.A.H., Hussain, J. (2021). Classification and Segmentation Models for Hyperspectral Imaging - An Overview. In: Yildirim Yayilgan, S., Bajwa, I.S., Sanfilippo, F. (eds) Intelligent Technologies and Applications. INTAP 2020. Communications in Computer and Information Science, vol 1382. Springer, Cham. https://doi.org/10.1007/978-3-030-71711-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71711-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71710-0

  • Online ISBN: 978-3-030-71711-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics