Skip to main content

Validation of Knee KL-classifying Deep Neural Network with Finnish Patient Data

  • Chapter
  • First Online:
Computational Sciences and Artificial Intelligence in Industry

Abstract

Osteoarthritis (OA) is the most common form of joint disease in the world. The diagnosis of OA is currently made by human experts and suffers from subjectivity, but recently new promising detection algorithms have been developed. We validated the current state-of-the-art KL-classifying neural network model for knee OA using knee X-rays taken from postmenopausal women suffering from knee pain attributable to OA. The performance of the model on the clinical data was considerably lower compared to the previous results on population-based test data. This suggests that the performance of the current grading methods is not yet adequate to be applied in clinical settings. The present results also emphasize the importance of using clinical data for performance evaluation before deploying medical machine learning models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abedin J, Antony J, McGuinness K, Moran K, O’Connor NE, Rebholz-Schuhmann D, Newell J (2019) Predicting knee osteoarthritis severity: comparative modeling based on patient’s data and plain X-ray images. Sci Rep 9(1):5761

    Article  Google Scholar 

  2. Antony J, McGuinness K, O’Connor NE, Moran K (2016) Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. In: 2016 23rd international conference on pattern recognition (ICPR). IEEE, pp 1195–1200

    Google Scholar 

  3. Antony J, McGuinness K, Moran K, O’Connor NE (2017) Automatic detection of knee joints and quantification of knee osteoarthritis severity using convolutional neural networks. In: Machine learning and data mining in pattern recognition: proceedings of 13th international conference—MLDM 2017. Springer, New York, pp 376–390

    Google Scholar 

  4. Arokoski JPA, Manninen P, Kröger H, Heliövaara M, Nykyri E, Impivaara O (2007) Hip and knee pain and osteoarthritis. In: Musculoskeletal Disorders and diseases in Finland: results of the health 2000 survey, number B 25 in Publications of the National Public Health Institute, pp 37–41

    Google Scholar 

  5. Chen P, Gao L, Shi X, Allen K, Yang L (2019) Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss. Comput Med Imaging Graph 75:84–92

    Article  Google Scholar 

  6. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), vol 1. IEEE, pp 886–893

    Google Scholar 

  7. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118

    Article  Google Scholar 

  8. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press. http://www.deeplearningbook.org

  9. Heliövaara M, Slätis P, Paavolainen P (2008) Nivelrikon esiintyvyys ja kustannukset (Prevalence and cost of osteoarthritis). Duodecim 124(16):1869–1874

    Google Scholar 

  10. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167

  11. Kaypahoito (2018) Knee and hip osteoarthritis. Current care guidelines, the Finnish medical society Duodecim, Helsinki. http://www.kaypahoito.fi/web/kh/suositukset/suositus?id=hoi50054 Accessed 27 Aug 2018. (Working group appointed by the Finnish Medical Society Duodecim and the Finnish Orthopaedic Association)

  12. Kellgren JH, Lawrence JS (1963) The epidemiology of chronic rheumatism. In: Kellgren JH (ed) Atlas of standard radiographs of arthritis. F.A. Davis, Philadelphia, PA, pp 10–11

    Google Scholar 

  13. Kingma DP, Adam JB (2014) A method for stochastic optimization. arXiv:1412.6980

  14. Litjens G, Kooi T, Ehteshami Bejnordi B, Setio A, Ciompi F, Ghafoorian M, van der Laak J, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Google Scholar 

  15. Munukka M, Waller B, Multanen J, Rantalainen T, Häkkinen A, Nieminen MT, Lammentausta E, Kujala UM, Paloneva J, Kautiainen H, Kiviranta I, Heinonen A (2014) Relationship between lower limb neuromuscular performance and bone strength in postmenopausal women with mild knee osteoarthritis. J Musculoskelet Neuronal Interact 14(4):418–424

    Google Scholar 

  16. Munukka M, Waller B, Rantalainen T, Häkkinen A, Nieminen MT, Lammentausta E, Kujala UM, Paloneva J, Sipilä S, Peuna A, Kautiainen H, Selänne H, Kiviranta I, Heinonen A (2016) Efficacy of progressive aquatic resistance training for tibiofemoral cartilage in postmenopausal women with mild knee osteoarthritis: a randomised controlled trial. Osteoarthr Cartil 24(10):1708–1717

    Article  Google Scholar 

  17. Munukka M, Waller B, Häkkinen A, Nieminen MT, Lammentausta E, Kujala U, Paloneva J, Kautiainen H, Kiviranta I, Heinonen A (2017) Physical activity is related with cartilage quality in women with knee osteoarthritis. Med Sci Sports Exerc 49(7):1323–1330

    Article  Google Scholar 

  18. Teramoto A, Fujita H, Yamamuro O, Tamaki T (2016) Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique. Med Phys 43(6):2821–2827

    Article  Google Scholar 

  19. Tiulpin A, Saarakkala S (2019) Automatic grading of individual knee osteoarthritis features in plain radiographs using deep convolutional neural networks. arXiv:1907.08020

  20. Tiulpin A, Thevenot J, Rahtu E, Saarakkala S (2017) A novel method for automatic localization of joint area on knee plain radiographs. In: Image analysis: proceedings of the 20th Scandinavian conference—SCIA 2017 (Tromsø), Part II. Springer, Berlin, pp 290–301

    Google Scholar 

  21. Tiulpin A, Thevenot J, Rahtu E, Lehenkari P, Saarakkala S (2018) Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci Rep 8(1):1727

    Article  Google Scholar 

  22. Waller B, Munukka M, Multanen J, Rantalainen T, Pöyhönen T, Nieminen MT, Kiviranta I, Kautiainen H, Selänne H, Dekker J, Sipilä S, Kujala UM, Häkkinen A, Heinonen A (2013) Effects of a progressive aquatic resistance exercise program on the biochemical composition and morphology of cartilage in women with mild knee osteoarthritis: protocol for a randomised controlled trial. BMC Musculoskelet Disord 14(1):82

    Article  Google Scholar 

  23. Waller B, Munukka M, Rantalainen T, Lammentausta E, Nieminen MT, Kiviranta I, Kautiainen H, Häkkinen A, Kujala UM, Heinonen A (2017) Effects of high intensity resistance aquatic training on body composition and walking speed in women with mild knee osteoarthritis: a 4-month RCT with 12-month follow-up. Osteoarthr Cartil 25(8):1238–1246

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esko Niinimäki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niinimäki, E., Paloneva, J., Pölönen, I., Heinonen, A., Äyrämö, S. (2022). Validation of Knee KL-classifying Deep Neural Network with Finnish Patient Data. In: Tuovinen, T., Periaux, J., Neittaanmäki, P. (eds) Computational Sciences and Artificial Intelligence in Industry. Intelligent Systems, Control and Automation: Science and Engineering, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-70787-3_12

Download citation

Publish with us

Policies and ethics