Skip to main content

Combat UGV Support of Company Task Force Operations

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2020)

Abstract

Effective deployment of military forces and equipment in diverse operations requires the widest possible support of modern technical means. Robotic, semi-autonomous or autonomous means using artificial intelligence can also be important for reconnaissance and orientation in the operational area, as well as for identifying and destroying the enemy, and saving soldiers' lives. The paper describes the research into the requirements for these unmanned systems, with an emphasis on their abilities to bypass or pass obstacles, to ascertain a wide range of information from the theatre of operations and to transmit it to the commander in real time. The tasks can be fulfilled either semi-autonomously, under the control of the operator or autonomously, including diverse offensive activities. With the use of the Maneuver Control System CZ the possibilities of maneuver planning and the use of the unmanned ground vehicle group to support the combat action of the company task force are described here. A case study was conducted as a basis for the development of the article. The scenarios of three tactical situations describe the possibilities of the effective tactical use of a group of autonomous means in a wooded and open terrain, as well as in attacking the enemy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AAP-6 (2018): NATO glossary of terms and definitions (English and French). NATO Standardization Office, Brussels (2018)

    Google Scholar 

  2. Federated Mission Networking: NATO Allied Command Transformation. Brussels (2015). https://web.archive.org/web/20190128083216/https://www.act.nato.int/fmn

  3. Network Centric Warfare Capabilities & Indian Armed Forces. Defence 360. Next Generation Weapons Technology (2016). https://defence360officials.blogspot.com/2016/12/network-centric-warfare-capabilities.html

  4. Niel, G. Siegel, Madni, A.M.: The digital battlefield: a behind the scenes look from the systems perspective. Procedia Comput. Sci. 28, 799–808 (2014). https://doi.org/10.1016/j.procs.2014.03.095

  5. Spak, U.: The common operational picture: a powerful enabler or a cause of severe misunderstanding? In: 22st International Command and Control Research and Technology Symposium (ICCRTS): Frontiers of C2, vol. Topic 4 (2017). ISSN 2577-1604

    Google Scholar 

  6. Sophronides, P., Papadopoulou, C., Giaoutzi, M., Scholten, H.: A common operational picture in support of situational awareness for efficient emergency response operations. J. Future Internet 2, 10–35 (2017). https://doi.org/10.18488/journal.102.2017.21.10.35

    Article  Google Scholar 

  7. Infantry Company Operations: US Marine Corps, Department of the Navy, Headquarters United States Marine Corps, p. 387. Washington, D.C. (2014). MCWP 3–11.1, PCN 143 000117 00

    Google Scholar 

  8. The Buzz: Top 10 Unmanned Ground Combat Vehicles (UGCVs), Top Military Robots in the World (2019). In: YouTube. 23 November 2019

    Google Scholar 

  9. DARPA Robotic Challenge -The Wins and Fails. In: YouTube. Channel of Robot Time Machine with Gray Bright. Tomorrow Show (2015). https://www.youtube.com/watch?v=wX0KagJ1du8

  10. Feickert, A., Kapp, L., Elsea, J.K., Harris, L.A.: U.S. Ground Forces Robotics and Autonomous Systems (RAS) and Artificial Intelligence (AI): Considerations for Congress. Washington D.C. (2018). https://digital.library.unt.edu/ark:/67531/metadc1442984/m1/.

  11. Digital Infantry Battlefield Solution, Research and Innovation, Part III, p. 120. Milrem robotics, Tallinn (2019). ISBN 978-9934-567-37-7

    Google Scholar 

  12. Digital Infantry Battlefield Solution, Introduction to Ground Robotics, Part I, p. 128. Milrem robotics, Tallinn (2016). ISBN 978-9984-583-92-1

    Google Scholar 

  13. Galliott, J.: The soldier’s tolerance for autonomous systems. J. Behav. Robot. 124–136 (2018). https://doi.org/10.1515/pjbr-2018-0008

  14. European Group on Ethics in Science and New Technologies, Artificial Intelligence, Robotics and ‘Autonomous’, Systems, Brussels, p. 24. (2018). https://doi.org/10.2777/786515.ISBN 978-92-79-80328-4

  15. The U.S. Army Robotic and Autonomous Systems Strategy, U.S. Army Training and Doctrine Command, p. 43. Fort Eustis (2017)

    Google Scholar 

  16. Unmanned Systems Integrated Roadmap FY2017–2042, p. 58 (2017). https://www.defensedaily.com/wp-content/uploads/post_attachment/206477.pdf

  17. Harder, Byron R.: Automated battle planning for combat models with maneuver and fire support, theses and dissertations, Monterey. Naval Postgraduate School, California, p. 477 (2017)

    Google Scholar 

  18. Swiecicki, C., Elliott, L.R, Wooldridge R.: Squad-level soldier-robot dynamics: exploring future concepts involving intelligent autonomous robots, army research laboratory, Aberdeen Proving Ground, p. 152 (2015). https://doi.org/10.13140/2.1.3575.6326.

  19. Pokonieczny, K., Rybanský, M.: Method of developing the maps of passability for unmanned ground vehicles. In: 9th IGRSM International Conference and Exhibition on Geospatial & Remote Sensing (IGRSM 2018) Kuala Lumpur, Malaysia: IOP Conference Series: Earth and Environmental Science, vol. 169 (2018). https://doi.org/10.1088/1755-1315/169/1/012027. ISSN 1755-1307.

  20. Rybanský, M.: Trafficability analysis through vegetation. In: Conference Proceedings of ICMT 2017. Institute of Electrical and Electronics Engineers Inc., Piscataway, pp. 207–210 (2017). https://doi.org/10.1109/MILTECHS.2017.7988757. ISBN 978-1-5386-1988-9.

  21. Hrabec, D., Mazal, J., Stodola, P.: Optimal maneuver for two cooperative military elements under uncertain enemy threat. Int. J. Oper. Res. 35(2), 263–277 (2019). https://doi.org/10.1504/IJOR.2019.10022439.ISSN1745-7645

    Article  MathSciNet  Google Scholar 

  22. Wermelinger, M., Fankhauser, P., Diethelm, R., Krüsi, P., Siegwart, R., Hutter, M.: Navigation planning for legged robots in challenging terrain, Daejeon, South Korea, pp. 1184–1189 (2016). https://doi.org/10.1109/IROS.2016.7759199.

  23. Hodický, J., Castrogiovanni, R., Lo Presti, A.: Modelling and simulation challenges in the urbanized area. In: 2016 Proceedings of the 17th International Conference on Mechatronics - Mechatronika (ME), pp. 429–432 (2016). Czech Technical University in Prague, Prague. ISBN 978-80-01-05882-4

    Google Scholar 

  24. Hodický, J., Procházka, D.: Challenges in the implementation of autonomous systems into the battlefield. In: Proceedings of the 2017 International Conference on Military Technologies (ICMT), pp. 743–747. Institute of Electrical and Electronics Engineers Inc., Piscataway (2017). https://doi.org/10.1109/MILTECHS.2017.7988855. ISBN 978-1-5386-1988-9.

  25. Bostelman, R., Messina, E.: A-UGV capabilities, Naples, Italy, pp. 1–7. (2019). https://doi.org/10.1109/IRC.2019.00130.

  26. Braun, W. G., Nossal, K. R., Hlatky, S.: Robotics and military operations. In.: Kingston Conference on International Security. U.S. Army War College, New York, p. 77 (2018). https://doi.org/10.1117/12.720422. ISBN 1-58487-780-4

  27. Tilenni, G.: Unmanned ground vehicles for combat support. Eur. Secur. Defence 74–77 (2019). https://euro-sd.com/2019/11/articles/15191/unmanned-ground-vehicles-for-combat-support/ ISSN 1617-7983

  28. Nohel, J.: In: Mazal, J. (ed.) MESAS 2018. LNCS, vol. 11472, pp. 553–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14984-0_41

    Chapter  Google Scholar 

  29. Nohel, J., Stodola, P., Flasar, Z.: Model of the optimal Maneuver route, IntechOpen, London, pp. 79–100 (2019). https://doi.org/10.5772/intechopen.85566. https://www.intechopen.com/online-first/model-of-the-optimal-maneuver-route

  30. Nohel, J., Flasar, Z.: Maneuver control system CZ. In: Mazal, J., Fagiolini, A., Vasik, P. (eds.) MESAS 2019. LNCS, vol. 11995, pp. 379–388. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43890-6_31

    Chapter  Google Scholar 

  31. Schachter, B. J.: Automatic Target Recognition, 3rd edn, p. 330. SPIE Press, Bellingham (2018). https://doi.org/10.1117/3.2315926. ISBN 978-1-510-61857-2

  32. Stodola, P., Mazal, J.: Tactical decision support system to aid commanders in their decision-making. In: Hodicky, J. (ed.) MESAS 2016. LNCS, vol. 9991, pp. 396–406. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47605-6_32

    Chapter  Google Scholar 

  33. Risald, R., Mirino, A., Suyoto, S.: Best routes selection using Dijkstra and floyd-warshall algorithm, Surabaya, Indonesia, pp. 155–158 (2017). https://doi.org/10.1109/ICTS.2017.8265662

  34. Pradhan, A., Kumar, M.G.: Finding all-pairs shortest path for a large-scale transportation network using parallel Floyd-Warshall and parallel Dijkstra algorithms. J. Comput. Civ. Eng. 27(3), 263–273 (2013). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000220

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Nohel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nohel, J., Stodola, P., Flasar, Z. (2021). Combat UGV Support of Company Task Force Operations. In: Mazal, J., Fagiolini, A., Vasik, P., Turi, M. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2020. Lecture Notes in Computer Science(), vol 12619. Springer, Cham. https://doi.org/10.1007/978-3-030-70740-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70740-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70739-2

  • Online ISBN: 978-3-030-70740-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics