Skip to main content

Mitochondrial DNA: Defects, Maintenance Genes and Depletion

  • Chapter
  • First Online:
Mitochondrial Diseases

Abstract

Mitochondria constitute a graticule dynamic cellular compartment present in the vast majority of eukaryotic cells. They produce most of the cellular energy by burning metabolic fuels. In addition, these organelles are involved in other essential processes such as nucleotide and iron-sulfur cluster biosynthesis, amino acid metabolism, fatty acid oxidation, calcium homeostasis, apoptosis, etc. Mitochondria contain their own genome, mtDNA, reminiscent of their bacterial origin. The mtDNA encodes 13 out of the 1500 estimated mitochondrial proteins and part of the machinery to translate them: 2 ribosomal RNAs (mt-rRNAs) and 22 tRNAs (mt-tRNAs). The remaining mitochondrial proteins are encoded in the nucleus, synthesized in the cytosol and imported into the mitochondria. The 13 mtDNA-encoded proteins are structural subunits of the energy producing system (the OXPHOS system), whose alterations provoke so-called mitochondrial OXPHOS diseases, a genetic and clinical heterogeneous group of disorders. The cellular mtDNA content, different according to the cell’s metabolic and energy requirements, is based on its replication machinery which is formed by a number of nuclear-encoded proteins, including DNA polymerase γ subunits PolG1 and PolG2, mtDNA helicase (Twinkle), single stranded binding protein (mtSSB), mtRNA polymerase (POLRMT/mtRNAP) and others. Functional alterations in any of these proteins or in those involved in the supply of deoxyribonucleotide triphosphate (dNTP) or in those controlling mitochondrial dynamics may provoke disorders characterized by the instability of the mtDNA, causing deletions and depletion. This chapter focuses on the molecular basis of these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almannai M, El-Hattab, Ayman W, Scaglia F (2018) Mitochondrial DNA replication: clinical syndromes. Essays Biochem 62:297–308

    Article  PubMed  Google Scholar 

  • Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW (2017) The genetics and pathology of mitochondrial disease. J Pathol 241:236–250

    Article  CAS  PubMed  Google Scholar 

  • Amato P, Tachibana M, Sparman M, Mitalipov S (2014) Three-parent in vitro fertilization: gene replacement for the prevention of inherited mitochondrial diseases. Fertil Steril 101:31–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  CAS  PubMed  Google Scholar 

  • Archibald JM (2015) Endosymbiosis and eukaryotic cell evolution. Curr Biol 25:R911–R921

    Article  CAS  PubMed  Google Scholar 

  • Aw WC, Garvin MR, Ballard JWO (2019) Exogenous factors may differentially influence the selective costs of mtDNA mutations. Adv Anat Embryol Cell Biol 231:51–74

    Article  PubMed  Google Scholar 

  • Bacalini MG, D’Aquila P, Marasco E, Nardini C, Montesanto A, Franceschi C, Passarino G, Garagnani P, Bellizzi D (2017) The methylation of nuclear and mitochondrial DNA in ageing phenotypes and longevity. Mech Ageing Dev 165:156–161

    Article  CAS  PubMed  Google Scholar 

  • Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT (2013) Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 19:1111–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagur R, Hajnoczky G (2017) Intracellular Ca(2+) sensing: its role in calcium homeostasis and signaling. Mol Cell 66:780–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bax BE, Bain MD, Scarpelli M, Filosto M, Tonin P, Moran N (2013) Clinical and biochemical improvements in a patient with MNGIE following enzyme replacement. Neurology 81:1269–1271

    Article  PubMed  PubMed Central  Google Scholar 

  • Besse A, Wu P, Bruni F, Donti T, Graham BH, Craigen WJ, Mcfarland R, Moretti P, Lalani S, Scott KL, Taylor RW, Bonnen PE (2015) The GABA transaminase, ABAT, is essential for mitochondrial nucleoside metabolism. Cell Metab 21:417–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonekamp NA, Larsson NG (2018) SnapShot: mitochondrial nucleoid. Cell 172:388–388 e1

    Article  PubMed  CAS  Google Scholar 

  • Bonnen PE, Yarham JW, Besse A, Wu P, Faqeih EA, Al-Asmari AM, Saleh MA, Eyaid W, Hadeel A, He L, Smith F, Yau S, Simcox EM, Miwa S, Donti T, Abu-Amero KK, Wong LJ, Craigen WJ, Graham BH, Scott KL, Mcfarland R, Taylor RW (2013) Mutations in FBXL4 cause mitochondrial encephalopathy and a disorder of mitochondrial DNA maintenance. Am J Hum Genet 93:471–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowmaker M, Yang MY, Yasukawa T, Reyes A, Jacobs HT, Huberman JA, Holt IJ (2003) Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone. J Biol Chem 278:50961–50969

    Article  CAS  PubMed  Google Scholar 

  • Camara Y, Gonzalez-Vioque E, Scarpelli M, Torres-Torronteras J, Caballero A, Hirano M, Marti R (2014) Administration of deoxyribonucleosides or inhibition of their catabolism as a pharmacological approach for mitochondrial DNA depletion syndrome. Hum Mol Genet 23:2459–2467

    Article  CAS  PubMed  Google Scholar 

  • Carelli V, La Morgia C (2018) Clinical syndromes associated with mtDNA mutations: where we stand after 30 years. Essays Biochem 62:235–254

    Article  PubMed  Google Scholar 

  • Chandel NS (2015) Evolution of mitochondria as signaling organelles. Cell Metab 22:204–206

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, Mccaffery JM, Chan DC (2010) Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141:280–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnery PF, Hudson G (2013) Mitochondrial genetics. Br Med Bull 106:135–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chouchani ET, Kazak L, Spiegelman BM (2019) New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab 29:27–37

    Article  CAS  PubMed  Google Scholar 

  • Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, Scorrano L (2013) Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155:160–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins TJ, Berridge MJ, Lipp P, Bootman MD (2002) Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J 21:1616–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotney J, Mckay SE, Shadel GS (2009) Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness. Hum Mol Genet 18:2670–2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craven L, Alston CL, Taylor RW, Turnbull DM (2017) Recent advances in mitochondrial disease. Annu Rev Genomics Hum Genet 18:257–275

    Article  CAS  PubMed  Google Scholar 

  • D’Aquila P, Montesanto A, Guarasci F, Passarino G, Bellizzi D (2017) Mitochondrial genome and epigenome: two sides of the same coin. Front Biosci (Landmark Ed) 22:888–908

    Article  Google Scholar 

  • Dassa EP, Dufour E, Goncalves S, Paupe V, Hakkaart GA, Jacobs HT, Rustin P (2009) Expression of the alternative oxidase complements cytochrome c oxidase deficiency in human cells. EMBO Mol Med 1:30–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132:833–842

    Article  PubMed  Google Scholar 

  • Elachouri G, Vidoni S, Zanna C, Pattyn A, Boukhaddaoui H, Gaget K, Yu-Wai-Man P, Gasparre G, Sarzi E, Delettre C, Olichon A, Loiseau D, Reynier P, Chinnery PF, Rotig A, Carelli V, Hamel CP, Rugolo M, Lenaers G (2011) OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res 21:12–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Hattab AW, Scaglia F (2013) Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics 10:186–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Hattab AW, Craigen WJ, Scaglia F (2017) Mitochondrial DNA maintenance defects. Biochim Biophys Acta Mol basis Dis 1863:1539–1555

    Article  CAS  PubMed  Google Scholar 

  • El-Hattab AW, Craigen WJ, Wong LJC, Scaglia F (2018) Mitochondrial DNA maintenance defects overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) GeneReviews((R)). University of Washington, Seattle

    Google Scholar 

  • Ellouze S, Augustin S, Bouaita A, Bonnet C, Simonutti M, Forster V, Picaud S, Sahel JA, Corral-Debrinski M (2008) Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction. Am J Hum Genet 83:373–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enriquez JA (2016) Supramolecular organization of respiratory complexes. Annu Rev Physiol 78:533–561

    Article  CAS  PubMed  Google Scholar 

  • Farmer T, NASLAVSKY N, Caplan S (2018) Tying trafficking to fusion and fission at the mighty mitochondria. Traffic 19:569–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Formosa LE, Ryan MT (2018) Mitochondrial OXPHOS complex assembly lines. Nat Cell Biol 20:511–513

    Article  CAS  PubMed  Google Scholar 

  • Frey TG, Renken CW, Perkins GA (2002) Insight into mitochondrial structure and function from electron tomography. Biochim Biophys Acta 1555:196–203

    Article  CAS  PubMed  Google Scholar 

  • Gammage PA, Rorbach J, Vincent AI, Rebar EJ, Minczuk M (2014) Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol Med 6:458–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano L, Deceglie S, D’Adamo P, Valentino ML, La Morgia C, Fracasso F, Roberti M, Cappellari M, Petrosillo G, Ciaravolo S, Parente D, Giordano C, Maresca A, Iommarini L, Del Dotto V, Ghelli AM, Salomao SR, Berezovsky A, Belfort R Jr, Sadun AA, Carelli V, Loguercio Polosa P, Cantatore P (2015) Cigarette toxicity triggers Leber’s hereditary optic neuropathy by affecting mtDNA copy number, oxidative phosphorylation and ROS detoxification pathways. Cell Death Dis 6:e2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, Feeney C, Horvath R, Yu-Wai-Man P, Chinnery PF, Taylor RW, Turnbull DM, Mcfarland R (2015) Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol 77:753–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorman GS, Chinnery PF, Dimauro S, Hirano M, Koga Y, Mcfarland R, Suomalainen A, Thorburn DR, Zeviani M, Turnbull DM (2016) Mitochondrial diseases. Nat Rev Dis Primers 2:16080

    Article  PubMed  Google Scholar 

  • Gustafsson CM, Falkenberg M, Larsson NG (2016) Maintenance and expression of mammalian mitochondrial DNA. Annu Rev Biochem 85:133–160

    Article  CAS  PubMed  Google Scholar 

  • Haas RH, Zolkipli Z (2014) Mitochondrial disorders affecting the nervous system. Semin Neurol 34:321–340

    Article  CAS  PubMed  Google Scholar 

  • Hamacher-Brady A, Brady NR (2016) Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci 73:775–795

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Camacho JD, Bernier M, Lopez-Lluch G, Navas P (2018) Coenzyme Q10 supplementation in aging and disease. Front Physiol 9:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirano M, Emmanuele V, Quinzii CM (2018) Emerging therapies for mitochondrial diseases. Essays Biochem 62:467–481

    Article  PubMed  PubMed Central  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548

    Article  CAS  PubMed  Google Scholar 

  • Holmes JB, Akman G, Wood SR, Sakhuja K, Cerritelli SM, Moss C, Bowmaker MR, Jacobs HT, Crouch RJ, Holt IJ (2015) Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication. Proc Natl Acad Sci U S A 112:9334–9339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt IJ, Jacobs HT (2014) Unique features of DNA replication in mitochondria: a functional and evolutionary perspective. BioEssays 36:1024–1031

    Article  CAS  PubMed  Google Scholar 

  • Holt IJ, Harding AE, Morgan-Hughes JA (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331:717–719

    Article  CAS  PubMed  Google Scholar 

  • Holt IJ, Harding AE, Petty RK, Morgan-Hughes JA (1990) A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet 46:428–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holt IJ, Lorimer HE, Jacobs HT (2000) Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 100:515–524

    Article  CAS  PubMed  Google Scholar 

  • Horbay R, Bilyy R (2016) Mitochondrial dynamics during cell cycling. Apoptosis 21:1327–1335

    Article  CAS  PubMed  Google Scholar 

  • Hou T, Wang X, Ma Q, Cheng H (2014) Mitochondrial flashes: new insights into mitochondrial ROS signalling and beyond. J Physiol 592:3703–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishihara T, Ban-Ishihara R, Maeda M, Matsunaga Y, Ichimura A, Kyogoku S, Aoki H, Katada S, Nakada K, Nomura M, Mizushima N, Mihara K, Ishihara N (2015) Dynamics of mitochondrial DNA nucleoids regulated by mitochondrial fission is essential for maintenance of homogeneously active mitochondria during neonatal heart development. Mol Cell Biol 35:211–223

    Article  PubMed  CAS  Google Scholar 

  • Johansson M, Karlsson A (1996) Cloning and expression of human deoxyguanosine kinase cDNA. Proc Natl Acad Sci U S A 93:7258–7262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson M, Karlsson A (1997) Cloning of the cDNA and chromosome localization of the gene for human thymidine kinase 2. J Biol Chem 272:8454–8458

    Article  CAS  PubMed  Google Scholar 

  • Johnson DT, Harris RA, French S, Blair PV, You J, Bemis KG, Wang M, Balaban RS (2007) Tissue heterogeneity of the mammalian mitochondrial proteome. Am J Physiol Cell Physiol 292:C689–C697

    Article  CAS  PubMed  Google Scholar 

  • Korhonen JA, Gaspari M, Falkenberg M (2003) Twinkle has 5′ -> 3' DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem 278:48627–48632

    Article  CAS  PubMed  Google Scholar 

  • Korhonen JA, Pham XH, Pellegrini M, Falkenberg M (2004) Reconstitution of a minimal mtDNA replisome in vitro. EMBO J 23:2423–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowluru A, Tannous M, Chen HQ (2002) Localization and characterization of the mitochondrial isoform of the nucleoside diphosphate kinase in the pancreatic beta cell: evidence for its complexation with mitochondrial succinyl-CoA synthetase. Arch Biochem Biophys 398:160–169

    Article  CAS  PubMed  Google Scholar 

  • Lee SR, Han J (2017) Mitochondrial nucleoid: shield and switch of the mitochondrial genome. Oxidative Med Cell Longev 2017:8060949

    Google Scholar 

  • Lim SE, Longley MJ, Copeland WC (1999) The mitochondrial p55 accessory subunit of human DNA polymerase gamma enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J Biol Chem 274:38197–38203

    Article  CAS  PubMed  Google Scholar 

  • Lollgen S, Weiher H (2015) The role of the Mpv17 protein mutations of which cause mitochondrial DNA depletion syndrome (MDDS): lessons from homologs in different species. Biol Chem 396:13–25

    Article  PubMed  CAS  Google Scholar 

  • Lopez LC, Akman HO, Garcia-Cazorla A, Dorado B, Marti R, Nishino I, Tadesse S, Pizzorno G, Shungu D, Bonilla E, Tanji K, Hirano M (2009) Unbalanced deoxynucleotide pools cause mitochondrial DNA instability in thymidine phosphorylase-deficient mice. Hum Mol Genet 18:714–722

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Lluch G, Del Pozo-Cruz J, Sanchez-Cuesta A, Cortes-Rodriguez AB, Navas P (2019) Bioavailability of coenzyme Q10 supplements depends on carrier lipids and solubilization. Nutrition 57:133–140

    Article  CAS  PubMed  Google Scholar 

  • Lott MT, Leipzig JN, Derbeneva O, Xie HM, Chalkia D, Sarmady M, Procaccio V, Wallace DC (2013) mtDNA variation and analysis using mitomap and mitomaster. Curr Protoc Bioinformatics 44(123):1–26

    PubMed  Google Scholar 

  • Macao B, Uhler JP, Siibak T, Zhu X, Shi Y, Sheng W, Olsson M, Stewart JB, Gustafsson CM, Falkenberg M (2015) The exonuclease activity of DNA polymerase gamma is required for ligation during mitochondrial DNA replication. Nat Commun 6:7303

    Article  CAS  PubMed  Google Scholar 

  • Mayr JA, Haack TB, Graf E, Zimmermann FA, Wieland T, Haberberger B, Superti-Furga A, Kirschner J, Steinmann B, Baumgartner MR, Moroni I, Lamantea E, Zeviani M, Rodenburg RJ, Smeitink J, Strom TM, Meitinger T, Sperl W, Prokisch H (2012) Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome. Am J Hum Genet 90:314–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286:774–779

    Article  CAS  PubMed  Google Scholar 

  • Miralles Fuste J, Shi Y, Wanrooij S, Zhu X, Jemt E, Persson O, Sabouri N, Gustafsson CM, Falkenberg M (2014) In vivo occupancy of mitochondrial single-stranded DNA binding protein supports the strand displacement mode of DNA replication. PLoS Genet 10:e1004832

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  • Nass MM, Nass S (1963) Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions. J Cell Biol 19:593–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholls TJ, Gustafsson CM (2018) Separating and segregating the human mitochondrial genome. Trends Biochem Sci 43:869–881

    Article  CAS  PubMed  Google Scholar 

  • Nicholls TJ, Zsurka G, Peeva V, Scholer S, Szczesny RJ, Cysewski D, Reyes A, Kornblum C, Sciacco M, Moggio M, Dziembowski A, Kunz WS, Minczuk M (2014) Linear mtDNA fragments and unusual mtDNA rearrangements associated with pathological deficiency of MGME1 exonuclease. Hum Mol Genet 23:6147–6162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nissanka N, Minczuk M, Moraes CT (2019) Mechanisms of mitochondrial DNA deletion formation. Trends Genet 35:235–244

    Article  CAS  PubMed  Google Scholar 

  • Nowinski SM, van Vranken JG, Dove KK, Rutter J (2018) Impact of mitochondrial fatty acid synthesis on mitochondrial biogenesis. Curr Biol 28:R1212–R1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA, Mootha VK (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palade GE (1952) The fine structure of mitochondria. Anat Rec 114:427–451

    Article  CAS  PubMed  Google Scholar 

  • Pearce SF, Rebelo-Guiomar P, D’Souza AR, Powell CA, van Haute L, Minczuk M (2017) Regulation of mammalian mitochondrial gene expression: recent advances. Trends Biochem Sci 42:625–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pernas L, Scorrano L (2016) Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol 78:505–531

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer G, Majamaa K, Turnbull DM, Thorburn D, Chinnery PF (2012) Treatment for mitochondrial disorders. Cochrane Database Syst Rev:CD004426

    Google Scholar 

  • Pfeffer G, Horvath R, Klopstock T, Mootha VK, Suomalainen A, Koene S, Hirano M, Zeviani M, Bindoff LA, Yu-Wai-Man P, Hanna M, Carelli V, McFarland R, Majamaa K, Turnbull DM, Smeitink J, Chinnery PF (2013) New treatments for mitochondrial disease-no time to drop our standards. Nat Rev Neurol 9:474–481

    Google Scholar 

  • Piel RB 3rd, Dailey HA Jr, Medlock AE (2019) The mitochondrial heme metabolon: insights into the complex(ity) of heme synthesis and distribution. Mol Genet Metab 28(3):198–203

    Article  CAS  Google Scholar 

  • Pontarin G, Fijolek A, Pizzo P, Ferraro P, Rampazzo C, Pozzan T, Thelander L, Reichard PA, Bianchi V (2008) Ribonucleotide reduction is a cytosolic process in mammalian cells independently of DNA damage. Proc Natl Acad Sci U S A 105:17801–17806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rampelt H, Zerbes RM, van der Laan M, Pfanner N (2017) Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. Biochim Biophys Acta, Mol Cell Res 1864:737–746

    Article  CAS  Google Scholar 

  • Reyes A, Kazak L, Wood SR, Yasukawa T, Jacobs HT, Holt IJ (2013) Mitochondrial DNA replication proceeds via a 'bootlace' mechanism involving the incorporation of processed transcripts. Nucleic Acids Res 41:5837–5850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robberson DL, Clayton DA (1972) Replication of mitochondrial DNA in mouse L cells and their thymidine kinase – derivatives: displacement replication on a covalently-closed circular template. Proc Natl Acad Sci U S A 69:3810–3814

    Google Scholar 

  • Roger AJ, Munoz-Gomez SA, Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27:R1177–R1192

    Article  CAS  PubMed  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:255–274

    Article  CAS  PubMed  Google Scholar 

  • Shpilka T, Haynes CM (2018) The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol 19:109–120

    Article  CAS  PubMed  Google Scholar 

  • Shutt TE, Gray MW (2006) Homologs of mitochondrial transcription factor B, sparsely distributed within the eukaryotic radiation, are likely derived from the dimethyladenosine methyltransferase of the mitochondrial endosymbiont. Mol Biol Evol 23:1169–1179

    Article  CAS  PubMed  Google Scholar 

  • Silva Ramos E, Larsson NG, Mourier A (2016) Bioenergetic roles of mitochondrial fusion. Biochim Biophys Acta 1857:1277–1283

    Article  CAS  PubMed  Google Scholar 

  • Slone J, Huang T (2020) The special considerations of gene therapy for mitochondrial diseases. NPJ Genom Med 5:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Sobek S, Boege F (2014) DNA topoisomerases in mtDNA maintenance and ageing. Exp Gerontol 56:135–141

    Article  CAS  PubMed  Google Scholar 

  • Spinazzola A, Zeviani M (2009) Mitochondrial diseases: a cross-talk between mitochondrial and nuclear genomes. Adv Exp Med Biol 652:69–84

    Article  CAS  PubMed  Google Scholar 

  • Sprenger HG, Langer T (2019) The good and the bad of mitochondrial breakups. Trends Cell Biol 29:888–900

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Moraes CT (2001) Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet 10:3093–3099

    Article  CAS  PubMed  Google Scholar 

  • Stehling O, Lill R (2013) The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases. Cold Spring Harb Perspect Biol 5:a011312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stewart JB, Chinnery PF (2015) The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet 16:530–542

    Article  CAS  PubMed  Google Scholar 

  • Suomalainen A (2011) Therapy for mitochondrial disorders: little proof, high research activity, some promise. Semin Fetal Neonatal Med 16:236–240

    Article  PubMed  Google Scholar 

  • Suomalainen A, Isohanni P (2010) Mitochondrial DNA depletion syndromes – many genes, common mechanisms. Neuromuscul Disord 20:429–437

    Google Scholar 

  • Tang JX, Thompson K, Taylor RW, Olahova M (2020) Mitochondrial OXPHOS biogenesis: co-regulation of protein synthesis, import, and assembly pathways. Int J Mol Sci 21(11):3820

    Article  CAS  PubMed Central  Google Scholar 

  • Tarnopolsky MA (2014) Exercise as a therapeutic strategy for primary mitochondrial cytopathies. J Child Neurol 29:1225–1234

    Article  PubMed  Google Scholar 

  • Tilokani L, Nagashima S, Paupe V, Prudent J (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62:341–360

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuzlak S, Kaufmann T, Villunger A (2016) Interrogating the relevance of mitochondrial apoptosis for vertebrate development and postnatal tissue homeostasis. Genes Dev 30:2133–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhler JP, Falkenberg M (2015) Primer removal during mammalian mitochondrial DNA replication. DNA Repair (Amst) 34:28–38

    Article  CAS  Google Scholar 

  • Vafai SB, Mootha VK (2012) Mitochondrial disorders as windows into an ancient organelle. Nature 491:374–383

    Article  CAS  PubMed  Google Scholar 

  • Viscomi C (2016) Toward a therapy for mitochondrial disease. Biochem Soc Trans 44:1483–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viscomi C, Zeviani M (2017) MtDNA-maintenance defects: syndromes and genes. J Inherit Metab Dis 40:587–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 27:105–117

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ 2nd, Nikoskelainen EK (1988) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242:1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Youle RJ (2009) The role of mitochondria in apoptosis*. Annu Rev Genet 43:95–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wanrooij PH, Uhler JP, Simonsson T, Falkenberg M, Gustafsson CM (2010) G-quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation. Proc Natl Acad Sci U S A 107:16072–16077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirth T, Parker N, Yla-Herttuala S (2013) History of gene therapy. Gene 525:162–169

    Article  CAS  PubMed  Google Scholar 

  • Yakubovskaya E, Chen Z, Carrodeguas JA, Kisker C, Bogenhagen DF (2006) Functional human mitochondrial DNA polymerase gamma forms a heterotrimer. J Biol Chem 281:374–382

    Article  CAS  PubMed  Google Scholar 

  • Yasukawa T, Kang D (2018) An overview of mammalian mitochondrial DNA replication mechanisms. J Biochem 164:183–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasukawa T, Reyes A, Cluett TJ, Yang MY, Bowmaker M, Jacobs HT, Holt IJ (2006) Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand. EMBO J 25:5358–5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young LS, Searle PF, Onion D, Mautner V (2006) Viral gene therapy strategies: from basic science to clinical application. J Pathol 208:299–318

    Article  CAS  PubMed  Google Scholar 

  • Yu-Wai-Man P, Votruba M, Moore AT, Chinnery PF (2014) Treatment strategies for inherited optic neuropathies: past, present and future. Eye (lond) 28:521–537. PMID: 24603424. https://doi.org/10.1038/eye.2014.37

  • Zheng W, Khrapko K, Coller HA, Thilly WG, Copeland WC (2006) Origins of human mitochondrial point mutations as DNA polymerase gamma-mediated errors. Mutat Res 599:11–20

    Article  CAS  PubMed  Google Scholar 

  • Zinovkina LA (2019) DNA replication in human mitochondria. Biochemistry (Mosc) 84:884–895

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Fernández-Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernández-Moreno, M.A., Vázquez-Fonseca, L., Zambrano, S.P., Garesse, R. (2021). Mitochondrial DNA: Defects, Maintenance Genes and Depletion. In: Navas, P., Salviati, L. (eds) Mitochondrial Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-70147-5_3

Download citation

Publish with us

Policies and ethics