Skip to main content

Pollen Grain Microscopic Image Classification Using an Ensemble of Fine-Tuned Deep Convolutional Neural Networks

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12661))

Included in the following conference series:

Abstract

Pollen grain micrograph classification has multiple applications in medicine and biology. Automatic pollen grain image classification can alleviate the problems of manual categorisation such as subjectivity and time constraints. While a number of computer-based methods have been introduced in the literature to perform this task, classification performance needs to be improved for these methods to be useful in practice.

In this paper, we present an ensemble approach for pollen grain microscopic image classification into four categories: Corylus Avellana well-developed pollen grain, Corylus Avellana anomalous pollen grain, Alnus well-developed pollen grain, and non-pollen (debris) instances. In our approach, we develop a classification strategy that is based on fusion of four state-of-the-art fine-tuned convolutional neural networks, namely EfficientNetB0, EfficientNetB1, EfficientNetB2 and SeResNeXt-50 deep models. These models are trained with images of three fixed sizes (\(224 \times 224\), \(240 \times 240\), and \(260 \times 260\) pixels) and their prediction probability vectors are then fused in an ensemble method to form a final classification vector for a given pollen grain image.

Our proposed method is shown to yield excellent classification performance, obtaining an accuracy of 94.48% and a weighted F1-score of 94.54% on the ICPR 2020 Pollen Grain Classification Challenge training dataset based on five-fold cross-validation. Evaluated on the test set of the challenge, our approach achieves a very competitive performance in comparison to the top ranked approaches with an accuracy and weighted F1-score of 96.28% and 96.30%, respectively.

This research has received funding from the Austrian Research Promotion Agency (FFG), No. 872636. We thank Nvidia corporation for their generous GPU donation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://iplab.dmi.unict.it/pollenclassificationchallenge.

  2. 2.

    https://iplab.dmi.unict.it/pollenclassificationchallenge/train.zip.

  3. 3.

    https://keras.io/.

  4. 4.

    https://www.tensorflow.org/.

  5. 5.

    https://github.com/qubvel/classification_models.

  6. 6.

    https://github.com/qubvel/efficientnet.

  7. 7.

    https://iplab.dmi.unict.it/pollenclassificationchallenge/results.

References

  1. Battiato, S., Ortis, A., Trenta, F., Ascari, L., Politi, M., Siniscalco, C.: Detection and classification of pollen grain microscope images. In: Conference on Computer Vision and Pattern Recognition Workshops (2020)

    Google Scholar 

  2. Biedermann, T., Winther, L., Till, S.J., Panzner, P., Knulst, A., Valovirta, E.: Birch pollen allergy in Europe. Allergy 74(7), 1237–1248 (2019). https://doi.org/10.1111/all.13758

    Article  Google Scholar 

  3. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: International Conference on Pattern Recognition, pp. 3121–3124 (2010). https://doi.org/10.1109/ICPR.2010.764

  4. Chica, M.: Authentication of bee pollen grains in bright-field microscopy by combining one-class classification techniques and image processing. Microsc. Res. Tech. 75(11), 1475–1485 (2012). https://doi.org/10.1002/jemt.22091

    Article  Google Scholar 

  5. Chinchor, N.A., Sundheim, B.: Message understanding conference (MUC) tests of discourse processing. In: Spring Symposium on Empirical Methods in Discourse Interpretation and Generation, pp. 21–26 (1995)

    Google Scholar 

  6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018

  7. Cruz, A.A.: Global Surveillance, Prevention and Control of Chronic Respiratory Diseases: A Comprehensive Approach. World Health Organization, Geneva (2007)

    Google Scholar 

  8. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Computer Society Conference on Computer Vision and Pattern Recognition. vol. 1 (2005)

    Google Scholar 

  9. Daood, A., Ribeiro, E., Bush, M.: Pollen grain recognition using deep learning. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Porikli, F., Skaff, S., Entezari, A., Min, J., Iwai, D., Sadagic, A., Scheidegger, C., Isenberg, T. (eds.) Advances in Visual Computing, pp. 321–330. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-50835-1_30

    Chapter  Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  11. D’Amato, G., et al.: Allergenic pollen and pollen allergy in Europe. Allergy 62(9), 976–990 (2007). https://doi.org/10.1111/j.1398-9995.2007.01393.x

    Article  Google Scholar 

  12. Fernandez-Delgado, M., Carrion, P., Cernadas, E., Galvez, J., Sa-Otero, P.: Improved classification of pollen texture images using SVM and MLP. In: International Conference on Visualization, Imaging and Image Processing. vol. 2 (2003)

    Google Scholar 

  13. Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences. Atmos. Environ. 32(14–15), 2627–2636 (1998)

    Article  Google Scholar 

  14. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  15. Goncalves, A.B., et al.: Feature extraction and machine learning for the classification of Brazilian Savannah pollen grains. PloS One 11(6), e0157044 (2016). https://doi.org/10.1371/journal.pone.0157044

  16. Halbritter, H., et al.: Palynology: history and systematic aspects. Illustrated Pollen Terminology, pp. 3–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-71365-6_1

    Chapter  Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  18. Holt, K.A., Bennett, K.D.: Principles and methods for automated palynology. N. Phytol. 203(3), 735–742 (2014). https://doi.org/10.1111/nph.12848

    Article  Google Scholar 

  19. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  20. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. Conf. Comput. Vis. Pattern Recogn. 1, 4700–4708 (2017)

    Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  23. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  24. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  25. Mahbod, A., Ellinger, I., Ecker, R., Smedby, Ö., Wang, C.: Breast cancer histological image classification using fine-tuned deep network fusion. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 754–762. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_85

    Chapter  Google Scholar 

  26. Mahbod, A., Schaefer, G., Ellinger, I., Ecker, R., Pitiot, A., Wang, C.: Fusing fine-tuned deep features for skin lesion classification. Computer. Med. Imaging Graph. 71, 19–29 (2019). https://doi.org/10.1016/j.compmedimag.2018.10.007

    Article  Google Scholar 

  27. Mahbod, A., Schaefer, G., Wang, C., Dorffner, G., Ecker, R., Ellinger, I.: Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification. Comput. Methods Programs Biomed. 193, p. 105475 (2020). https://doi.org/10.1016/j.cmpb.2020.105475

  28. Mahbod, A., Schaefer, G., Wang, C., Ecker, R., Dorffner, G., Ellinger, I.: Investigating and exploiting image resolution for transfer learning-based skin lesion classification. In: 25th International Conference on Pattern Recognition (2020)

    Google Scholar 

  29. Mahbod, A., Tschandl, P., Langs, G., Ecker, R., Ellinger, I.: The effects of skin lesion segmentation on the performance of dermatoscopic image classification. Comput. Methods Programs Biomed. 197, 105725 (2020). https://doi.org/10.1016/j.cmpb.2020.105725

    Article  Google Scholar 

  30. Menad, H., Ben-Naoum, F., Amine, A.: Deep convolutional neural network for pollen grains classification. In: 3rd Edition of the National Study Day on Research on Computer Sciences. CEUR Workshop Proceedings, vol. 2351 (2019)

    Google Scholar 

  31. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Google Scholar 

  32. Ranzato, M., Taylor, P., House, J., Flagan, R., LeCun, Y., Perona, P.: Automatic recognition of biological particles in microscopic images. Pattern Recogn. Lett. 28(1), 31–39 (2007)

    Article  Google Scholar 

  33. Sevillano, V., Aznarte, J.L.: Improving classification of pollen grain images of the POLEN23E dataset through three different applications of deep learning convolutional neural networks. PloS One 13(9), e0201807 (2018). https://doi.org/10.1371/journal.pone.0201807

    Article  Google Scholar 

  34. Sevillano, V., Holt, K., Aznarte, J.L.: Precise automatic classification of 46 different pollen types with convolutional neural networks. PLoS One 15(6), e0229751 (2020). https://doi.org/10.1371/journal.pone.0229751

    Article  Google Scholar 

  35. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  36. Stillman, E., Flenley, J.R.: The needs and prospects for automation in palynology. Quat. Sci. Rev. 15(1), 1–5 (1996)

    Article  Google Scholar 

  37. Szegedy, C., et al.: Going deeper with convolutions. In: Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  38. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  39. Tan, M., Le, Q.V.: EfficientNet: Rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)

  40. Travieso, C.M., Briceño, J.C., Ticay-Rivas, J.R., Alonso, J.B.: Pollen classification based on contour features. In: International Conference on Intelligent Engineering Systems (2011). https://doi.org/10.1109/INES.2011.5954712

  41. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Conference on Computer Vision and Pattern Recognition, pp. 5987–5995 (2017)

    Google Scholar 

  42. Zhang, Z.: Deep-learning-based early detection of diabetic retinopathy on fundus photography using efficientnet. In: International Conference on Innovation in Artificial Intelligence, pp. 70–74 (2020). https://doi.org/10.1145/3390557.3394303

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahbod, A., Schaefer, G., Ecker, R., Ellinger, I. (2021). Pollen Grain Microscopic Image Classification Using an Ensemble of Fine-Tuned Deep Convolutional Neural Networks. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12661. Springer, Cham. https://doi.org/10.1007/978-3-030-68763-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68763-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68762-5

  • Online ISBN: 978-3-030-68763-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics