Skip to main content

Abstract

In this chapter, we recall Mumford’s construction of a moduli space of semistable holomorphic vector bundles over Riemann surfaces by using geometric invariant theory, and the notion of the Harder-Narasimhan filtration as the main tool to understand unstable bundles left out of the moduli space. We also give the basics of the analytical construction of Dolbeault’s moduli space of differential operators \(\overline {\partial }\) and Narasimhan-Seshadri relation with the moduli of representations of the fundamental group. We finish by exposing the main facts about Hitchin’s moduli space of Higgs bundles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atiyah M.F., Vector bundles over an elliptic curve, Proc. London. Math. Soc. 7, (1957) 414–452.

    Article  MathSciNet  Google Scholar 

  2. Atiyah M.F., Bott R., The Yang-Mills equations over Riemann surfaces, Phil. Trans. R. Soc. Lond. 308 no. 1505, (1982) 523–615.

    MathSciNet  MATH  Google Scholar 

  3. Corlette K., Flat G-bundles with canonical metrics, J. Diff. Geom. 28, (1988) 361–382.

    MathSciNet  MATH  Google Scholar 

  4. Donaldson S.K., A new proof of a theorem of Narasimhan and Seshadri, J. Diff. Geom. 18, (1982) 269–278.

    MathSciNet  MATH  Google Scholar 

  5. Donaldson, S. K., Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundle, Proc. London Math. Soc. (3) 50 (1), (1985) 1–26.

    Google Scholar 

  6. Dolbeault P., Sur la cohomologie des varietés analytiques complexes, C. R. Acad. Sci. Paris 236, (1953) 175–177.

    MathSciNet  MATH  Google Scholar 

  7. García-Prada O., Gothen P., Mundet i Riera I., The Hitchin–Kobayashi correspondence, Higgs pairs and surface group representations, arXiv:0909.4487.

    Google Scholar 

  8. Gieseker D., Geometric invariant theory and the moduli of bundles, Lecture Publication Series, IAS/Park City Mathematics Series v.00, (1994).

    Google Scholar 

  9. Griffiths, P., Harris, J., Principles of Algebraic Geometry, Wiley Classics Library, John Wiley & Sons, New York, (1978).

    Google Scholar 

  10. Grothendieck A., Sur classification des fibrés holomorphes sur la sphére de Riemann, Amer. J. Math. 79, (1957) 121–138.

    Article  MathSciNet  Google Scholar 

  11. Grothendieck A., Techniques de construction et théorèmes d’existence en géométrie algébrique IV: Les schémas de Hilbert, Séminarie Bourbaki 221, (1960–1961).

    Google Scholar 

  12. Harder G., Narasimhan M.S., On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212, (1975) 215–248.

    Article  MathSciNet  Google Scholar 

  13. Hitchin N.J., The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 no. 3, (1987) 59–126.

    Article  MathSciNet  Google Scholar 

  14. Hitchin N.J., Gauge theory on Riemann surfaces, (M. Carvalho, X. Gomez-Mont and A. Verjovsky, editors), Lectures on Riemann surfaces: proceedings of the college on Riemann surfaces, Italy, (1989) 99–118.

    Google Scholar 

  15. Huybrechts D., Lehn M., The Geometry of Moduli Spaces of Sheaves, Aspects of Mathematics E31, Vieweg, Braunschweig/Wiesbaden (1997).

    Book  Google Scholar 

  16. Maruyama M., Moduli of stable sheaves, I and II., J. Math. Kyoto Univ. 17, (1977) 91–126 and 18, (1978) 557–614.

    Google Scholar 

  17. Maruyama M. (with collaboration of Abe T. and Inaba M.), Moduli spaces of stable sheaves on schemes. Restriction theorems, boundedness and the GIT construction, MSJ Memoirs 33, (2016).

    Google Scholar 

  18. Mumford D., Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34, Springer-Verlag Berlin Heidelberg New York (1965).

    Google Scholar 

  19. Narasimhan M.S., Seshadri C.S., Stable and Unitary Vector Bundles on a Compact Riemann Surface, Ann. of Math. (2) 82, (1965) 540–567.

    Google Scholar 

  20. Newstead P.E., Introduction to Moduli Problems and Orbit Spaces, TATA Institute of Fundamental Research Lectures on Mathematics and Physics 51, Bombay, Narosa Publishing House, New Delhi, (1978).

    Google Scholar 

  21. Nitsure N., Moduli space of semistable pairs on a curve, Proc. London Math. Soc. 62, (1991) 275–300.

    Article  MathSciNet  Google Scholar 

  22. Schmitt A.H.W., Geometric Invariant Theory and Decorated Principal Bundles, EMS Publishing House (2008).

    Google Scholar 

  23. Seshadri C.S., Space of unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 85, (1967) 303–336.

    Google Scholar 

  24. Shatz S.S., The decomposition and specialization of algebraic families of vector bundles, Compositio Mathematica 35 no. 2, (1977) 163–187.

    MathSciNet  MATH  Google Scholar 

  25. Simpson C.T., Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1, (1988) 867–918.

    Article  MathSciNet  Google Scholar 

  26. Simpson C.T., Higgs bundles and local systems, Publ. Math. de l’IHÉS 75, (1992) 5–95.

    Article  MathSciNet  Google Scholar 

  27. Simpson C.T., Moduli of representations of the fundamental group of a smooth projective variety I and II, Publ. Math. de l’IHÉS 79, (1994) 47–129 and 80, (1994) 5–79.

    Google Scholar 

  28. Uhlenbeck, K., Yau, S.T., On the existence of Hermitian–Yang–Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39, (1986) 5257–5293.

    Article  MathSciNet  Google Scholar 

  29. Wells R.O., Differential Analysis on Complex Manifolds, with an Appendix by Oscar García-Prada, Grad. Texts in Math. 65, Springer-Verlag New York, (1972).

    Google Scholar 

  30. Yang C.N., Mills R.L., Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev. 96 no. 1, (1954) 191–195.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zamora Saiz, A., Zúñiga-Rojas, R.A. (2021). Moduli Space of Vector Bundles. In: Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-67829-6_4

Download citation

Publish with us

Policies and ethics