Skip to main content

Balanced Independent and Dominating Sets on Colored Interval Graphs

  • Conference paper
  • First Online:
  • 1200 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12607))

Abstract

We study two new versions of independent and dominating set problems on vertex-colored interval graphs, namely f-Balanced Independent Set (f-BIS) and f-Balanced Dominating Set (f-BDS). Let \(G=(V,E)\) be an interval graph with a color assignment function \({{\,\mathrm{\gamma }\,}}:V \rightarrow \{1,\ldots ,k\}\) that maps all vertices in G onto k colors. A subset of vertices \(S\subseteq V\) is called f-balanced if S contains f vertices from each color class. In the f-BIS and f-BDS problems, the objective is to compute an independent set or a dominating set that is f-balanced. We show that both problems are NP-complete even on proper interval graphs. For the BIS problem on interval graphs, we design two FPT algorithms, one parameterized by (fk) and the other by the vertex cover number of G. Moreover, for an optimization variant of BIS on interval graphs, we present a polynomial time approximation scheme (PTAS) and an \(O(n\log n)\) time 2-approximation algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We use the term color assignment instead of vertex coloring to avoid any confusion with the general notion of vertex coloring; in particular, a color assignment \({{\,\mathrm{\gamma }\,}}\) can map adjacent vertices to the same color.

  2. 2.

    FPT is the class of parameterized problems that can be solved in time \(O(g(k)n^{O(1)})\) for input size n, parameter k, and some computable function g.

References

  1. Agarwal, P.K., Van Kreveld, M.J., Suri, S.: Label placement by maximum independent set in rectangles. Comput. Geom. Theory Appl. 11(3–4), 209–218 (1998). https://doi.org/10.1016/S0925-7721(98)00028-5

    Article  MathSciNet  MATH  Google Scholar 

  2. Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM J. Comput. 15(4), 1054–1068 (1986). https://doi.org/10.1137/0215075

    Article  MathSciNet  MATH  Google Scholar 

  3. Banerjee, S., Bhore, S.: Algorithm and hardness results on liar’s dominating set and \({k}\)-tuple dominating set. In: Colbourn, C.J., Grossi, R., Pisanti, N. (eds.) IWOCA 2019. LNCS, vol. 11638, pp. 48–60. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25005-8_5

    Chapter  Google Scholar 

  4. Been, K., Nöllenburg, M., Poon, S.H., Wolff, A.: Optimizing active ranges for consistent dynamic map labeling. Comput. Geome. Theory Appl. 43(3), 312–328 (2010). https://doi.org/10.1016/j.comgeo.2009.03.006

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. In: Computational Geometry (SoCG 2009), pp. 333–340. ACM, New York (2009). https://doi.org/10.1145/1542362.1542420

  6. Chang, G.J.: Algorithmic aspects of domination in graphs. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 1811–1877. Springer, Boston (1998). https://doi.org/10.1007/978-1-4613-0303-9_28

    Chapter  Google Scholar 

  7. Chellali, M., Favaron, O., Hansberg, A., Volkmann, L.: k-domination and k-independence in graphs: a survey. Graphs Comb. 28(1), 1–55 (2012). https://doi.org/10.1007/s00373-011-1040-3

    Article  MathSciNet  MATH  Google Scholar 

  8. Federickson, G.N.: Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16(6), 1004–1022 (1987). https://doi.org/10.1137/0216064

    Article  MathSciNet  Google Scholar 

  9. Garnero, V., Sau, I., Thilikos, D.M.: A linear kernel for planar red-blue dominating set. Discrete Appl. Math. 217, 536–547 (2017). https://doi.org/10.1016/j.dam.2016.09.045

    Article  MathSciNet  MATH  Google Scholar 

  10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  11. Haunert, J.H., Hermes, T.: Labeling circular focus regions based on a tractable case of maximum weight independent set of rectangles. In: ACM SIGSPATIAL Workshop on Interacting with Maps (MapInteract 2014), pp. 15–21 (2014). https://doi.org/10.1145/2677068.2677069

  12. Haynes, T.W., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs. Pure and Applied Mathematics, vol. 208. Dekker (1998)

    Google Scholar 

  13. Irving, R.W.: On approximating the minimum independent dominating set. Inf. Process. Lett. 37(4), 197–200 (1991). https://doi.org/10.1016/0020-0190(91)90188-N

    Article  MathSciNet  MATH  Google Scholar 

  14. van Kreveld, M.J., Strijk, T., Wolff, A.: Point labeling with sliding labels. Comput. Geom. Theory Appl. 13(1), 21–47 (1999). https://doi.org/10.1016/S0925-7721(99)00005-X

    Article  MathSciNet  MATH  Google Scholar 

  15. Lekkeikerker, C., Boland, J.: Representation of a finite graph by a set of intervals on the real line. Fundam. Math. 51(1), 45–64 (1962). https://doi.org/10.4064/fm-51-1-45-64

    Article  MathSciNet  Google Scholar 

  16. Mustafa, N.H., Ray, S.: PTAS for geometric hitting set problems via local search. In: Computational Geometry (SoCG 2009), pp. 17–22. ACM, New York (2009). https://doi.org/10.1145/1542362.1542367

  17. Okamoto, Y., Uno, T., Uehara, R.: Counting the number of independent sets in chordal graphs. J. Discrete Algorithms 6(2), 229–242 (2008). https://doi.org/10.1016/j.jda.2006.07.006

    Article  MathSciNet  MATH  Google Scholar 

  18. Pardalos, P.M., Xue, J.: The maximum clique problem. J. Global Optim. 4(3), 301–328 (1994). https://doi.org/10.1007/BF01098364

    Article  MathSciNet  MATH  Google Scholar 

  19. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl. Math. 8(1), 85–89 (1984). https://doi.org/10.1016/0166-218X(84)90081-7

    Article  MathSciNet  MATH  Google Scholar 

  20. Van Bevern, R., Mnich, M., Niedermeier, R., Weller, M.: Interval scheduling and colorful independent sets. J. Sched. 18(5), 449–469 (2015). https://doi.org/10.1007/s10951-014-0398-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Wagner, F., Wolff, A.: A combinatorial framework for map labeling. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 316–331. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-37623-2_24

    Chapter  Google Scholar 

  22. Yoshinaka, R.: Higher-order matching in the linear lambda calculus in the absence of constants is NP-complete. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 235–249. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3_18

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian Science Fund (FWF) under grant P31119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangping Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhore, S., Haunert, JH., Klute, F., Li, G., Nöllenburg, M. (2021). Balanced Independent and Dominating Sets on Colored Interval Graphs. In: Bureš, T., et al. SOFSEM 2021: Theory and Practice of Computer Science. SOFSEM 2021. Lecture Notes in Computer Science(), vol 12607. Springer, Cham. https://doi.org/10.1007/978-3-030-67731-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67731-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67730-5

  • Online ISBN: 978-3-030-67731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics