Skip to main content

Cooperative Pollution Source Exploration and Cleanup with a Bio-inspired Swarm Robot Aggregation

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2020)

Abstract

Using robots for exploration of extreme and hazardous environments has the potential to significantly improve human safety. For example, robotic solutions can be deployed to find the source of a chemical leakage and clean the contaminated area. This paper demonstrates a proof-of-concept bio-inspired exploration method using a swarm robotic system based on a combination of two bio-inspired behaviors: aggregation, and pheromone tracking. The main idea of the work presented is to follow pheromone trails to find the source of a chemical leakage and then carry out a decontamination task by aggregating at the critical zone. Using experiments conducted by a simulated model of a Mona robot, the effects of population size and robot speed on the ability of the swarm was evaluated in a decontamination task. The results indicate the feasibility of deploying robotic swarms in an exploration and cleaning task in an extreme environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arvin, F., Espinosa, J., Bird, B., West, A., Watson, S., Lennox, B.: Mona: an affordable open-source mobile robot for education and research. J. Intell. Robot. Syst. 94, 1–15 (2018)

    Google Scholar 

  2. Arvin, F., et al.: \(\Phi \)Clust: pheromone-based aggregation for robotic swarms. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4288–4294. IEEE (2018)

    Google Scholar 

  3. Arvin, F., Turgut, A.E., Krajník, T., Yue, S.: Investigation of cue-based aggregation in static and dynamic environments with a mobile robot swarm. Adapt. Behav. 24(2), 102–118 (2016)

    Article  Google Scholar 

  4. Bayındır, L.: A review of swarm robotics tasks. Neurocomputing 172, 292–321 (2016)

    Article  Google Scholar 

  5. Bodi, M., Thenius, R., Szopek, M., Schmickl, T., Crailsheim, K.: Interaction of robot swarms using the honeybee-inspired control algorithm BEECLUST. Math. Comput. Model. Dyn. Syst. 18(1), 87–100 (2012)

    Article  Google Scholar 

  6. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  7. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Bonabeau, E., Theraula, G.: Self-Organization in Biological Systems, vol. 7. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  8. Cao, Y.U., Fukunaga, A.S., Kahng, A.: Cooperative mobile robotics: antecedents and directions. Auton. Robots 4(1), 7–27 (1997)

    Article  Google Scholar 

  9. Correll, N., Martinoli, A.: Multirobot inspection of industrial machinery. IEEE Robot. Autom. Mag. 16(1), 103–112 (2009)

    Article  Google Scholar 

  10. Fox, D., Burgard, W., Kruppa, H., Thrun, S.: Collaborative multi-robot localization. In: Förstner, W., Buhmann, J.M., Faber, A., Faber, P. (eds.) Mustererkennung 1999. Informatik aktuell. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-60243-6_2

  11. Grieve, B.D., et al.: The challenges posed by global broadacre crops in delivering smart agri-robotic solutions: a fundamental rethink is required. Glob. Food Secur. 23, 116–124 (2019)

    Article  Google Scholar 

  12. Halloy, J., et al.: Social integration of robots into groups of cockroaches to control self-organized choices. Science 318(5853), 1155–1158 (2007)

    Article  Google Scholar 

  13. Hassan, M.A.A.: A review of wireless technology usage for mobile robot controller. In: Proceeding of the International Conference on System Engineering and Modeling (ICSEM 2012), pp. 7–12 (2012)

    Google Scholar 

  14. Heran, H.: Untersuchungen über den temperatursinn der honigbiene (apis mellifica) unter besonderer berücksichtigung der wahrnehmung strahlender wärme. Zeitschrift für vergleichende Physiologie 34(2), 179–206 (1952)

    Google Scholar 

  15. Huang, X., Arvin, F., West, C., Watson, S., Lennox, B.: Exploration in extreme environments with swarm robotic system. In: 2019 IEEE International Conference on Mechatronics (ICM), vol. 1, pp. 193–198. IEEE (2019)

    Google Scholar 

  16. Kowadlo, G., Russell, R.A.: Robot odor localization: a taxonomy and survey. Int. J. Robot. Res. 27(8), 869–894 (2008)

    Article  Google Scholar 

  17. Liu, Z., West, C., Lennox, B., Arvin, F.: Local bearing estimation for a swarm of low-cost miniature robots. Sensors 20(11), 3308 (2020)

    Article  Google Scholar 

  18. Mayet, R., Roberz, J., Schmickl, T., Crailsheim, K.: Antbots: a feasible visual emulation of pheromone trails for swarm robots. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 84–94. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15461-4_8

    Chapter  Google Scholar 

  19. Michel, O., Cyberbotics Ltd.: Webots\(^{\rm TM}\): professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1), 39–42 (2004)

    Google Scholar 

  20. Morrell, L.J., James, R.: Mechanisms for aggregation in animals: rule success depends on ecological variables. Behav. Ecol. 19(1), 193–201 (2007)

    Article  Google Scholar 

  21. Na, S., et al.: Bio-inspired artificial pheromone system for swarm robotics applications. Adapt. Behav. 1–21 (2020)

    Google Scholar 

  22. Na, S., Raoufi, M., Turgut, A.E., Krajník, T., Arvin, F.: Extended artificial pheromone system for swarm robotic applications. In: Conference on Artificial Life (ALIFE), pp. 608–615. MIT Press (2019)

    Google Scholar 

  23. Nagatani, K., et al.: Emergency response to the nuclear accident at the fukushima daiichi nuclear power plants using mobile rescue robots. J. Field Robot. 30(1), 44–63 (2013)

    Article  Google Scholar 

  24. Parrish, J.K., Edelstein-Keshet, L.: Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284(5411), 99–101 (1999)

    Article  Google Scholar 

  25. Raoufi, M., Turgut, A.E., Arvin, F.: Self-organized collective motion with a simulated real robot swarm. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds.) TAROS 2019. LNCS (LNAI), vol. 11649, pp. 263–274. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23807-0_22

    Chapter  Google Scholar 

  26. Rappel, W.J., Nicol, A., Sarkissian, A., Levine, H., Loomis, W.F.: Self-organized vortex state in two-dimensional dictyostelium dynamics. Phys. Rev. Lett. 83(6), 1247 (1999)

    Article  Google Scholar 

  27. Schmickl, T., et al.: Get in touch: cooperative decision making based on robot-to-robot collisions. Auton. Agents Multi-Agent Syst. 18(1), 133–155 (2009)

    Article  MathSciNet  Google Scholar 

  28. Schranz, M., Caro, G.A.D., Schmickl, T., Elmenreich, W., Arvin, F., Şekercioğlu, A.: Swarm intelligence and cyber-physical systems: concepts, challenges and future trends. Swarm Evol. Comput. 60, 100762 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by OP VVV project Research Center for Informatics, code CZ.02.1.01/0.0/0.0/16_019/0000765, and the UK EPSRC projects RAIN (EP/R026084/1) and RNE (EP/P01366X/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Sadeghi Amjadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sadeghi Amjadi, A., Raoufi, M., Turgut, A.E., Broughton, G., Krajník, T., Arvin, F. (2021). Cooperative Pollution Source Exploration and Cleanup with a Bio-inspired Swarm Robot Aggregation. In: Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J., Gu, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 350. Springer, Cham. https://doi.org/10.1007/978-3-030-67540-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67540-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67539-4

  • Online ISBN: 978-3-030-67540-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics