Skip to main content

Dissimilar Joining of ZEK100 and AA6022 for Automotive Application

  • Conference paper
  • First Online:
Friction Stir Welding and Processing XI

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Mg-Al joining is problematic due to dissimilar high-temperature flow characteristics that often result in defects and brittle intermetallic compounds (IMC) at the interface. Process development on lap joining of 1.27 mm 6022 (top sheet) and 1.5 mm ZEK100 (bottom sheet) intended for an automotive door application is presented. Process development was conducted in linear welding using power control (modulating torque and spindle speed) with multiple tool designs and welding parameters. Process variables were correlated to micro- and macro-structure and mechanical properties. A 2D computational model was created to understand the failure mechanism and contribution of mechanical interlocking towards joint strength. Joint efficiency of 48% (compared to base 6022 Al) at a welding speed of 0.625 m/min has been demonstrated thus far. For a thin (<2 mm) automotive sheet with a softer material as a bottom sheet, adequate control of process variables is critical to maintain weld stability and avoid excessive IMC layer at the interface. A combination of mechanical anchoring and metallurgical reaction is likely responsible for bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kostka A, Coelho RS, Santos J dos, Pyzall AR (2009) Microstructure of friction stir welding of aluminum alloy to magnesium alloy. Scr Mater 60 : 953–956. https://www.sciencedirect.com/science/article/pii/S1359646209001080

  2. Mohammadi J, Behnamian Y, Mostafaei A, Gerlich AP (2015) Tool geometry, rotation and travel speeds effects on the properties of dissimilar magnesium/aluminum friction stir welded lap joints. Mater Des 75: 95–112. https://www.sciencedirect.com/science/article/pii/S0261306915001004

  3. Chen YC, Nakata K (2008) Friction stir lap joining aluminum and magnesium alloys. Scr Mater 58: 433–436. https://www.sciencedirect.com/science/article/pii/S1359646207007713

  4. Shen JJ, Li Y, Zhang T, Peng D, Wang D, Xu N (2015) Preheating friction stir spot welding of Mg/Al alloys in various lap configurations. Sci Technol Weld Join 20 (1): 1–10. https://doi.org/10.1179/1362171814Y.0000000248

  5. Kwon YJ, Shigematsu I, Saito N (2008) Dissimilar friction stir welding between magnesium and aluminum alloys. Mater Lett 62: 3827–3829. https://www.sciencedirect.com/science/article/pii/S0167577X08004369

  6. Buffa G, Baffari D, Di Caro A, Fratini L (2015) Friction stir welding of dissimilar aluminum-magnesium joints: sheet mutual position effects. Sci Technol Weld Join 20 (4): 271–279. https://doi.org/10.1179/1362171815Y.0000000016

  7. Venkateswaran P, Reynolds AP (2012) Factors affecting the properties of Friction Stir Welds between aluminum and magnesium alloys. Mater Sci Eng A 545: 26–37. https://www.sciencedirect.com/science/article/pii/S0921509312002870

  8. Fu BL, Qin GL, Li F, Meng XM, Zhang JZ, Wu C S (2015) Friction stir welding process of dissimilar metals of 6061-T6aluminum alloy to AZ31 B magnesium alloy. J Mater Process Technol 218: 38–47. https://www.sciencedirect.com/science/article/pii/S0924013614004634

  9. Ji S, Li Z, Zhang L, Zhou Z, Chai P (2016) Effect of lap configuration on magnesium to aluminum friction stir lap welding assisted by external stationary shoulder. Mater Des 103: 160–170. https://www.sciencedirect.com/science/article/pii/S0264127516305408

  10. Mohammadi J, Behnamian Y, Mostafaei A, Izadi H, Saeidd T, Kokabi AH, Gerlich AP (2015) Friction stir welding joint of dissimilar materials between AZJ 1 B magnesium and 6061 aluminum alloys: microstructure studies and mechanical characterizations. Mater Charact 101: 189–207. https://www.sciencedirect.com/science/article/pii/S1044580315000108?via%3Dihub

  11. Liang ZY, Chen K, Wang XN, Yao JS, Yang Q, Zhang LT, Shan AO (2013) Effect of tool offset and tool rotational speed on enhancing mechanical property of Al/Mg dissimilar FSW joints. Metal Mater Trans A 44A: 3721–3731. https://doi.org/10.1007/s11661-013-1700-4

  12. Smith M (2009) ABAQUS/Standard User's Manual, Version 6.9, Dassault Systems Simulia Corp, United States

    Google Scholar 

  13. Elices MG, Guinea GV, Gomez J, Planas J (2002) The cohesive zone model: advantages, limitations and challenges. Eng Fracture Mech 69(2):137–63. https://www.sciencedirect.com/science/article/pii/S0013794401000832

  14. Khan AS, Huang S (1995) Continuum theory of plasticity. Wiley, New York. https://www.wiley.com/en-us/Continuum+Theory+of+Plasticity-p-9780471310433

  15. Wang T, Tamayo DR, Jiang X, Kitsopoulos P, Kuang W, Gupta V, Barker E, Upadhyay P (2020) Effect of interfacial characteristics on magnesium to steel joint obtained using FAST. Mater. Des. 28:108697. https://www.sciencedirect.com/science/article/pii/S0264127520302318

  16. Johnson GR, Cook WH (1998) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48. https://www.sciencedirect.com/science/article/pii/0013794485900529

Download references

Acknowledgements

PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RL01830. This work was sponsored by the DOE- EERE, Vehicle Technology under project titled “Phase Field Modeling of Corrosion for Design of Next-Generation Magnesium-Aluminum Vehicle Joints” partnership of Worcester Polytechnic Institute, Oak Ridge National Lab and Magna. We are thankful to Daniel Graff to assist during welding; Anthony Guzman for metallographic preparation; Tim Roosendaal, Ethan Nickerson, and Robert Seffens for mechanical testing and DIC analysis; and Joshua Silverstein for SEM characterization. The authors appreciate material support provided by Tim Skszek, Magna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush Upadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, H., Upadhyay, P., Kulkarni, S.S., Choi, W. (2021). Dissimilar Joining of ZEK100 and AA6022 for Automotive Application. In: Hovanski, Y., Sato, Y., Upadhyay, P., Naumov, A.A., Kumar, N. (eds) Friction Stir Welding and Processing XI . The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-65265-4_11

Download citation

Publish with us

Policies and ethics