Skip to main content

Prediction of Tiers in the Ranking of Ice Hockey Players

  • Conference paper
  • First Online:
Machine Learning and Data Mining for Sports Analytics (MLSA 2020)

Abstract

Many teams in the NHL utilize data analysis and employ data analysts. An important question for these analysts is to identify attributes and skills that may help predict the success of individual players. This study uses detailed player statistics from four seasons, player rankings from EA’s NHL video games, and six machine learning algorithms to find predictive models that can be used to identify and predict players’ ranking tier (top 10%, 25% and 50%). We also compare and contrast which attributes and skills best predict a player’s success, while accounting for differences in player positions (goalkeepers, defenders and forwards). When comparing the resulting models, the Bayesian classifiers performed best and had the best sensitivity. The tree-based models had the highest specificity, but had trouble classifying the top 10% tier players. In general, the models were best at classifying forwards, highlighting that many of the official metrics are focused on the offensive measures and that it is harder to use official performance metrics alone to differentiate between top tier players.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See, e.g., https://en.wikipedia.org/wiki/Analytics_(ice_hockey).

  2. 2.

    https://www.hockey-reference.com/.

  3. 3.

    https://www.ea.com/games/nhl/nhl-20/ratings.

  4. 4.

    In the original data the forwards were categorized as left wing, right wing, center and wing.

References

  1. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002). https://doi.org/10.1613/jair.953

    Article  MATH  Google Scholar 

  2. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Prieditis, A., Russell, S.J. (eds.) Machine Learning, Proceedings of the Twelfth International Conference on Machine Learning, pp. 194–202 (1995). https://doi.org/10.1016/b978-1-55860-377-6.50032-3

  3. Gramacy, R.B., Jensen, S.T., Taddy, M.: Estimating player contribution in hockey with regularized logistic regression. J. Quant. Anal. Sports 9, 97–111 (2013). https://doi.org/10.1515/jqas-2012-0001

    Article  Google Scholar 

  4. Gu, W., Foster, K., Shang, J., Wei, L.: A game-predicting expert system using big data and machine learning. Expert Syst. Appl. 130, 293–305 (2019). https://doi.org/10.1016/j.eswa.2019.04.025

    Article  Google Scholar 

  5. Hall, M.: Correlation-based feature selection for machine learning. Ph.D. thesis, The University of Waikato, New Zealand (1999)

    Google Scholar 

  6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009). https://doi.org/10.1145/1656274.1656278

    Article  Google Scholar 

  7. Kaplan, E.H., Mongeon, K., Ryan, J.T.: A Markov model for hockey: manpower differential and win probability added. INFOR Inf. Syst. Oper. Res. 52(2), 39–50 (2014). https://doi.org/10.3138/infor.52.2.39

    Article  MathSciNet  Google Scholar 

  8. Lehmus Persson, T., Kozlica, H., Carlsson, N., Lambrix, P.: Prediction of tiers in the ranking of ice hockey players - extended version (2020). https://www.ida.liu.se/~patla00/publications/mlsa2020-hockey-extended.pdf

  9. Liu, G., Schulte, O.: Deep reinforcement learning in ice hockey for context-aware player evaluation. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 3442–3448 (2018). https://doi.org/10.24963/ijcai.2018/478

  10. Liu, Y., Schulte, O., Li, C.: Model trees for identifying exceptional players in the NHL and NBA drafts. In: Brefeld, U., Davis, J., Van Haaren, J., Zimmermann, A. (eds.) MLSA 2018. LNCS (LNAI), vol. 11330, pp. 93–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17274-9_8

    Chapter  Google Scholar 

  11. Ljung, D., Carlsson, N., Lambrix, P.: Player pairs valuation in ice hockey. In: Brefeld, U., Davis, J., Van Haaren, J., Zimmermann, A. (eds.) MLSA 2018. LNCS (LNAI), vol. 11330, pp. 82–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17274-9_7

    Chapter  Google Scholar 

  12. Macdonald, B.: A regression-based adjusted plus-minus statistic for NHL players. J. Quant. Anal. Sports 7(3) (2011). https://doi.org/10.2202/1559-0410.1284

  13. Macdonald, B.: An improved adjusted plus-minus statistic for nhl players. In: MIT Sloan Sports Analytics Conference (2011)

    Google Scholar 

  14. Nsolo, E., Lambrix, P., Carlsson, N.: Player valuation in European football. In: Brefeld, U., Davis, J., Van Haaren, J., Zimmermann, A. (eds.) MLSA 2018. LNCS (LNAI), vol. 11330, pp. 42–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17274-9_4

    Chapter  Google Scholar 

  15. Pettigrew, S.: Assessing the offensive productivity of NHL players using in-game win probabilities. In: MIT Sloan Sports Analytics Conference (2015)

    Google Scholar 

  16. Routley, K., Schulte, O.: A Markov game model for valuing player actions in ice hockey. In: Meila, M., Heskes, T. (eds.) Uncertainty in Artificial Intelligence, pp. 782–791 (2015)

    Google Scholar 

  17. Sans Fuentes, C., Carlsson, N., Lambrix, P.: Player impact measures for scoring in ice hockey. In: Karlis, D., Ntzoufras, I., Drikos, S. (eds.) MathSport International 2019 Conference, pp. 307–317 (2019)

    Google Scholar 

  18. Schuckers, M.: Draft by numbers: using data and analytics to improve National Hockey League (NHL) player selection. In: MIT Sloan Sports Analytics Conference (2016)

    Google Scholar 

  19. Schuckers, M., Curro, J.: Total Hockey Rating (THoR): a comprehensive statistical rating of National Hockey League forwards and defensemen based upon all on-ice events. In: MIT Sloan Sports Analytics Conference (2013)

    Google Scholar 

  20. Schulte, O., Khademi, M., Gholami, S., Zhao, Z., Javan, M., Desaulniers, P.: A Markov Game model for valuing actions, locations, and team performance in ice hockey. Data Min. Knowl. Discov. 31(6), 1735–1757 (2017). https://doi.org/10.1007/s10618-017-0496-z

    Article  MathSciNet  Google Scholar 

  21. Schulte, O., Zhao, Z., Javan, M., Desaulniers, P.: Apples-to-apples: clustering and ranking NHL players using location information and scoring impact. In: MIT Sloan Sports Analytics Conference (2017)

    Google Scholar 

  22. Thomas, A., Ventura, S.L., Jensen, S., Ma, S.: Competing process hazard function models for player ratings in ice hockey. Ann. Appl. Stat. 7(3), 1497–1524 (2013). https://doi.org/10.1214/13-AOAS646

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Lambrix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lehmus Persson, T., Kozlica, H., Carlsson, N., Lambrix, P. (2020). Prediction of Tiers in the Ranking of Ice Hockey Players. In: Brefeld, U., Davis, J., Van Haaren, J., Zimmermann, A. (eds) Machine Learning and Data Mining for Sports Analytics. MLSA 2020. Communications in Computer and Information Science, vol 1324. Springer, Cham. https://doi.org/10.1007/978-3-030-64912-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64912-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64911-1

  • Online ISBN: 978-3-030-64912-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics