Skip to main content

Eco-Epidemiology of Vector-Borne Transmission of Trypanosoma cruzi in Domestic Habitats

  • Chapter
  • First Online:
Triatominae - The Biology of Chagas Disease Vectors

Part of the book series: Entomology in Focus ((ENFO,volume 5))

Abstract

Triatomine species largely differ in their degrees of adaptation to thrive in domestic habitats, blood-feed on humans, and transmit Trypanosoma cruzi. Pathogen transmission dynamics are shaped by ecological, biological, and social factors. Here we link housing quality and host availability to the host-feeding patterns of domestic triatomines and examine how their blood-feeding performance affects temperature-dependent vital rates and bug population dynamics. The stability/instability habitat divide connects with the large/small triatomine population size dichotomy and on whether bug population dynamics are density-dependent or density-independent and dominated by stochasticity. Seasonal variations in temperature acting on triatomine blood-feeding activity and human-vector contact rates determined the spring peak of symptomatic acute cases of Chagas disease in northern Argentina across four decades. The presence of domestic animals (dogs, cats, and chickens) and commensal rodents increases domestic infestation, vector infection, and parasite transmission across multiple settings and triatomine species. Both ecological and social factors contribute to human infection risk through social vulnerability, mobility patterns, and housing instability. Understanding the interactions among eco-bio-social factors may lead to the design and implementation of improved, sustainable disease control or elimination strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aagaard-Hansen J, Claire LC (2010) Neglected tropical diseases: equity and social determinants. In: Blas E, Kurup AS (eds) Equity, social determinants and public health programmes. World Health Organization, Ginebra, pp 135–157

    Google Scholar 

  • Abad-Franch F (2016) A simple, biologically sound, and potentially useful working classification of Chagas disease vectors. Mem Inst Oswaldo Cruz 111:649–651

    Article  PubMed  PubMed Central  Google Scholar 

  • Abad-Franch F, Valença-Barbosa C, Sarquis O et al (2014) All that glisters is not gold: sampling-process uncertainty in disease-vector surveys with false negative and false-positive detections. PLoS Negl Trop Dis 8:e3187

    Article  PubMed  PubMed Central  Google Scholar 

  • Abad-Franch F, Lima MM, Sarquis O et al (2015) On palms, bugs, and Chagas disease in the Americas. Acta Trop 151:126–141

    Article  PubMed  Google Scholar 

  • Abrahan L, Gorla D, Catalá S (2011) Dispersal of Triatoma infestans and other Triatominae species in the arid Chaco of Argentina. Flying, walking or passive carriage? The importance of walking females. Mem Inst Oswaldo Cruz 106:232–239

    Article  PubMed  Google Scholar 

  • Aiga H, Sasagawa E, Hashimoto K et al (2012) Chagas disease: assessing the existence of a threshold for bug infestation rate. Am J Trop Med Hyg 86:972–979

    Article  PubMed  PubMed Central  Google Scholar 

  • Albarracin-Veizaga H, Carvalho ME, Nascimento EM et al (1999) Chagas disease in an area of recent occupation in Cochabamba, Bolivia. Rev Saude Publ 33:230–236

    Article  CAS  Google Scholar 

  • Alonso JM, Fabre AR, Galván M et al (2009) La enfermedad de Chagas en poblaciones aborígenes del Noreste de Argentina. Enf Emerg 11:115–118

    Google Scholar 

  • Alroy KA, Huang C, Gilman RH et al (2015) Prevalence and transmission of Trypanosoma cruzi in people of rural communities of the High Jungle of Northern Peru. PLoS Negl Trop Dis 9:e0003779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrade AL, Zicker F, De Oliveira RM et al (1995) Evaluation of risk factors for house infestation by Triatoma infestans in Brazil. Am J Trop Med Hyg 53:443–447

    Article  PubMed  Google Scholar 

  • Araujo RN, Pereira MH, Soares AC et al (2009) Effect of intestinal erythrocyte agglutination on the feeding performance of Triatoma brasiliensis (Hemiptera: Reduviidae). J Insect Physiol 55:862–868

    Article  CAS  PubMed  Google Scholar 

  • Arrom-Suhurt CM, Arrom-Suhurt CH, Arrom-Suhurt MA et al (2018) Socioeconomic profile and perceptions of Chagas disease in indigenous communities of the Paraguayan Chaco. J Public Health:1–10

    Google Scholar 

  • Ault SK (2007) Chagas disease and neglected diseases: challenging poverty and exclusion. In: La enfermedad de Chagas a la puerta de los 100 años de conocimiento de una endemia americana ancestral. Organización Panamericana de la Salud-Fundación Mundo Sano, Buenos Aires, pp 13–18

    Google Scholar 

  • Basombrio MA, Segovia A, Esteban E et al (1999) Endemic Trypanosoma cruzi infection in indian populations of the Gran Chaco territory of South America: performance of diagnostic assays and epidemiological features. Ann Trop Med Parasitol 93:41–48

    CAS  PubMed  Google Scholar 

  • Bayer AM, Hunter GC, Gilman RH et al (2009) Chagas disease, migration and community settlement patterns in Arequipa, Peru. PLoS Negl Trop Dis 3:e567

    Article  PubMed  PubMed Central  Google Scholar 

  • Begon M (2008) Effects of host diversity on disease dynamics. In: Ostfeld RS, Keesing F, Eviner ET (eds) Infectious disease ecology. Effects of ecosystems on disease and of disease on ecosystems. Princeton University Press, Princeton, pp 12–29

    Google Scholar 

  • Beyer HL, Haydon DT, Morales JM et al (2010) The interpretation of habitat preference metrics under use-availability designs. Philos Trans R Soc B 365:2245–2254

    Article  Google Scholar 

  • Biancardi MA, Conca Moreno M, Torres N et al (2003) Seroprevalencia de la enfermedad de Chagas en 17 parajes del “Monte impenetrable” de la provincia del Chaco. Medicina (Buenos Aires) 63:125–129

    Google Scholar 

  • Bizimana J-P, Twarabamenye E, Kienberger S (2015) Assessing the social vulnerability to malaria in Rwanda. Malar J 14:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Booysen F, van der Berg S, Burger R et al (2008) Using an asset index to assess trends in poverty in seven Sub-Saharan African countries. World Dev 36:1113–1130

    Article  Google Scholar 

  • Brenière SF, Waleckx E, Barnabé C (2016) Over six thousand Trypanosoma cruzi strains classified into Discrete Typing units (DTUs): attempt at an inventory. PLoS Negl Trop Dis 10:e0004792

    Article  PubMed  PubMed Central  Google Scholar 

  • Brenière SF, Villacis A, Aznar C (2017) Vector transmission: how it works, what transmits, where it occurs. In: Tibayrenc M, Telleria J (eds) American trypanosomiasis Chagas disease: one hundred years of research, 2nd edn. Elsevier, Saint Louis, pp 497–516

    Chapter  Google Scholar 

  • Briceño-León R (2009) La enfermedad de Chagas en las Américas: una perspectiva de ecosalud. Cad Saude Publica 25(Supl1):71–82

    Article  Google Scholar 

  • Briceño-León R, Méndez Galván J (2007) The social determinants of Chagas disease and the transformations of Latin America. Mem Inst Oswaldo Cruz 102:109–112

    Article  PubMed  Google Scholar 

  • Brierley CK, Suarez N, Arora G et al (2014) Healthcare access and health beliefs of the indigenous peoples in remote Amazonian Peru. Am J Trop Med Hyg 90:180–183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buitrago NL, Bosseno MF, Waleckx E et al (2013) Risk of transmission of Trypanosoma cruzi by wild Triatoma infestans (Hemiptera: Reduviidae) in Bolivia supported by the detection of human blood meals. Infect Genet Evol 19:141–144

    Article  PubMed  Google Scholar 

  • Buitrago R, Bosseno MF, Depickère S et al (2016) Blood meal sources of wild and domestic Triatoma infestans (Hemiptera: Reduviidae) in Bolivia: connectivity between cycles of transmission of Trypanosoma cruzi. Parasit Vectors 9:214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bustamante DM, Monroy C, Pineda S et al (2009) Risk factors for intradomiciliary infestation by the Chagas disease vector Triatoma dimidiata in Jutiapa, Guatemala. Cad Saude Publica 25:S83–S92

    Article  PubMed  Google Scholar 

  • Bustamante DM, de Urioste-Stone SM, Cruz JG et al (2014) Ecological, social and biological risk factors for continued Trypanosoma cruzi transmission by Triatoma dimidiata in Guatemala. PLoS One 9:e104599

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell-Lendrum D, Woodruff R (2007) Climate change – quantifying the health impact at national and local levels. In: Environmental burden of disease series, no.14. World Health Organization, Geneva

    Google Scholar 

  • Campbell-Lendrum DH, Angulo VM, Esteban L et al (2007) House-level risk factors for triatomine infestation in Colombia. Int J Epidemiol 36:866–872

    Article  CAS  PubMed  Google Scholar 

  • Campos R, Acuna-Retamar M, Botto-Mahan C et al (2007) Susceptibility of Mepraia spinolai and Triatoma infestans to different Trypanosoma cruzi strains from naturally infected rodent hosts. Acta Trop 104:25–29

    Article  PubMed  Google Scholar 

  • Carcavallo RU, Franca-Rodriguez ME, Salvatella R et al (1999) Habitats and related fauna. In: Carcavallo RU, Girón IG, Jurberg J, Lent H (eds) Atlas of Chagas disease vectors in the Americas, vol II. Editora Fiocruz, Rio de Janeiro, pp 561–620

    Google Scholar 

  • Cardinal MV, Lauricella MA, Marcet PL et al (2007) Impact of community-based vector control on house infestation and Trypanosoma cruzi infection in Triatoma infestans, dogs and cats in the Argentine Chaco. Acta Trop 103:201–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinal MV, Lauricella MA, Ceballos LA et al (2008) Molecular epidemiology of domestic and sylvatic Trypanosoma cruzi infection in rural northwestern Argentina. Int J Parasitol 38:1533–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinal MV, Orozco MM, Enriquez GF et al (2014) Heterogeneities in the eco-epidemiology of Trypanosoma cruzi infection in rural communities of the Argentinean Chaco. Am J Trop Med Hyg 90:1063–1073

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardinal MV, Sartor PA, Gaspe MS et al (2018) High levels of human infection with Trypanosoma cruzi associated with the domestic density of infected vectors and hosts in a rural area of northeastern Argentina. Parasit Vectors 11:492

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho-Moreira CJ, Spata MC, Coura JR et al (2003) In vivo and in vitro metacyclogenesis tests of two strains of Trypanosoma cruzi in the triatomine vectors Triatoma pseudomaculata and Rhodnius neglectus: short/long-term and comparative study. Exp Parasitol 103:102–111

    Article  CAS  PubMed  Google Scholar 

  • Castañera MB, Aparicio JP, Gürtler RE (2003) A stage-structured stochastic model of the population dynamics of Triatoma infestans, the main vector of Chagas disease. Ecol Model 162:33–53

    Article  Google Scholar 

  • Castillo-Neyra R, Barbu CM, Salazar R et al (2015) Host-seeking behavior and dispersal of Triatoma infestans, a vector of Chagas disease, under semifield conditions. PLoS Negl Trop Dis 9:e3433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Catalá SS (1994) Blood meal size and nutritional status of Triatoma infestans under natural climatic conditions. Med Vet Entomol 8:104–106

    Google Scholar 

  • Catalá S, Crocco LB, Morales GF (1997) Trypanosoma cruzi transmission risk index (TcTRI): an entomological indicator of Chagas disease vectorial transmission to humans. Acta Trop 68:285–295

    Article  PubMed  Google Scholar 

  • Cattan PE, Pinochet A, Botto-Mahan C et al (2002) Abundance of Mepraia spinolai in a periurban zone of Chile. Mem Inst Oswaldo Cruz 97:285–287

    Article  PubMed  Google Scholar 

  • Ceballos LA, Vazquez-Prokopec GM, Cecere MC et al (2005) Feeding rates, nutritional status and flight dispersal potential of peridomestic populations of Triatoma infestans in rural northwestern Argentina. Acta Trop 95:149–159

    Article  CAS  PubMed  Google Scholar 

  • Cecere MC, Gürtler RE, Chuit R et al (1997) Effects of chickens on the prevalence of infestation and population density of Triatoma infestans in rural houses of North-West Argentina. Med Vet Entomol 11:383–388

    Article  CAS  PubMed  Google Scholar 

  • Cecere MC, Gürtler RE, Canale DM et al (1998) Factors limiting the domiciliary density of Triatoma infestans, vector of Chagas’ disease, in North-West Argentina: a longitudinal study. Bull World Health Organ 76:373–384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cecere MC, Canale DM, Gürtler RE (2003) Effects of refuge availability on the population dynamics of Triatoma infestans in Central Argentina. J Appl Ecol 40:742–756

    Article  Google Scholar 

  • Cecere MC, Vazquez-Prokopec GM, Gürtler RE et al (2004) Spatiotemporal analysis of reinfestation by Triatoma infestans (Hemiptera: Reduviidae) following insecticide spraying in a rural community in northwestern Argentina. Am J Trop Med Hyg 71:803–810

    Article  PubMed  Google Scholar 

  • Cecere MC, Vazquez-Prokopec GM, Ceballos LA et al (2006) Comparative trial of the effectiveness of pyrethroid insecticides against peridomestic populations of Triatoma infestans in northwestern Argentina. J Med Entomol 43:902–909

    Article  CAS  PubMed  Google Scholar 

  • Cecere MC, Vazquez-Prokopec GM, Ceballos LA et al (2013) Improved chemical control of Chagas disease vectors in the dry Chaco region. J Med Entomol 50:394–403

    Article  PubMed  Google Scholar 

  • Cecere MC, Leporace M, Fernández MP et al (2016) Host-feeding sources and infection with Trypanosoma cruzi of Triatoma infestans and Triatoma eratyrusiformis (Hemiptera, Reduviidae) from the Calchaqui Valleys in Northwestern Argentina. J Med Entomol 53:666–673

    Article  CAS  PubMed  Google Scholar 

  • Chambers R (1989) Special issue on vulnerability: how the poor cope. IDS Bull 20:1–7

    Article  Google Scholar 

  • Charron D (2012) Ecohealth research in practice. Innovative applications of an ecosystem approach to health. International Development Research Centre/Springer, Ottawa/New York

    Book  Google Scholar 

  • Chaudhuri S, Jalan J, Suryahadi A (2002) Assessing household vulnerability to poverty from cross-sectional data: a methodology and estimates from Indonesia. Columbia University, New York

    Google Scholar 

  • Cohen JE, Gürtler RE (2001) Modeling household transmission of American trypanosomiasis. Science 293:694–698

    Article  CAS  PubMed  Google Scholar 

  • Cohen JE, Rodríguez-Planes LI, Gaspe MS et al (2017) Taylor’s law and Chagas disease vector control. PLoS Negl Trop Dis 11:6092

    Article  Google Scholar 

  • Colinet H, Sinclair BJ, Vernon P et al (2015) Insects in fluctuating thermal environments. Annu Rev Entomol 60:123–140

    Article  CAS  PubMed  Google Scholar 

  • Crocco L, Catalá S (1997) Host preferences of Triatoma sordida. Ann Trop Med Parasitol 91:927–930

    Article  CAS  PubMed  Google Scholar 

  • Cucunubá ZM, Nouvellet P, Conteh L et al (2017) Modelling historical changes in the force-of-infection of Chagas disease to inform control and elimination programmes: application in Colombia. BMJ Glob Health 2:e000345

    Article  PubMed  PubMed Central  Google Scholar 

  • Curto de Casas SI, Carcavallo RU, Galíndez Girón I et al (1999) Bioclimatic factors and zones of life. In: Carcavallo RU, Girón IG, Jurberg J, Lent H (eds) Atlas of Chagas disease vectors in the Americas, vol III. Editora Fiocruz, Rio de Janeiro, pp 793–838

    Google Scholar 

  • de Lana M, de Menezes-Machado EM (2017) Biology of Trypanosoma cruzi and biological diversity. In: Tibayrenc M, Telleria J (eds) American Trypanosomiasis Chagas disease: one hundred years of research, 2nd edn. Elsevier, Saint Louis, pp 339–363

    Google Scholar 

  • de Urioste-Stone SM, Pennington PM, Pellecer E et al (2015) Development of a community-based intervention for the control of Chagas disease based on peridomestic animal management: an eco-bio-social perspective. Trans R Soc Trop Med Hyg 109:159–167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delgado S, Castillo Neyra R, Quispe Machaca VR et al (2011) A history of Chagas disease transmission, control, and re-emergence in peri-rural La Joya, Perú. PLoS Negl Trop Dis 5:e970

    Article  PubMed  PubMed Central  Google Scholar 

  • Delgado S, Ernst KC, Pumahuanca ML et al (2013) A country bug in the city: urban infestation by the Chagas disease vector Triatoma infestans in Arequipa, Peru. Int J Health Geogr 12:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Dell’Arciprete A, Braunstein J, Touris C et al (2014) Cultural barriers to effective communication between indigenous communities and health care providers in northern Argentina: an anthropological contribution to Chagas disease prevention and control. Int J Equity Health 13:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Girolamo C, Bodini C, Marta BL et al (2011) Chagas disease at the crossroad of international migration and public health policies: why a national screening might not be enough. Eur Secur 16:19965

    Google Scholar 

  • Di Iorio O, Gürtler RE (2017) Seasonality and temperature-dependent flight dispersal of Triatoma infestans and other vectors of Chagas disease in western Argentina. J Med Entomol 54:1285–1292

    Article  PubMed  Google Scholar 

  • Dias E (1955) Variações mensais da incidência das formas evolutivas do Triatoma infestans e do Panstrongylus megistus no município de Bambuí, Estado de Minas Gerais. Mem Inst Oswaldo Cruz 53:457–472

    Article  Google Scholar 

  • Dias JCP, Schofield CJ (2017) Social and medical aspects on Chagas disease management and control. In: Tibayrenc M, Telleria J (eds) American Trypanosomiasis Chagas disease: one hundred years of research, 2nd edn. Elsevier, Saint Louis, pp 47–57

    Chapter  Google Scholar 

  • Dias E, Zeledón R (1955) Infestaçao domiciliária em grau extremo por Triatoma infestans. Mem Inst Oswaldo Cruz 53:473–486

    Article  CAS  PubMed  Google Scholar 

  • Diosque P, Barnabé C, Padilla AM et al (2003) Multilocus enzyme electrophoresis analysis of Trypanosoma cruzi isolates from a geographically restricted endemic area for Chagas’ disease in Argentina. Int J Parasitol 33:997–1003

    Article  CAS  PubMed  Google Scholar 

  • Diosque P, Padilla AM, Cimino RO et al (2004) Chagas disease in rural areas of Chaco Province, Argentina: epidemiologic survey in humans, reservoirs, and vectors. Am J Trop Med Hyg 71:590–593

    Article  PubMed  Google Scholar 

  • Diotaiuti L, Faria Filho OF, Carneiro FC et al (2000) Aspectos operacionais do controle do Triatoma brasiliensis. Cad Saude Publica 16:S61–S67

    Article  Google Scholar 

  • Dujardin JP, Schofield CJ (2004) Triatominae: systematics, morphology and population biology. In: Maudlin I, Holmes PH, Miles MA (eds) The trypanosomiases. CABI, Wallingford, pp 181–200

    Chapter  Google Scholar 

  • Dumonteil E, Nouvellet P, Rosecrans K et al (2013) Eco-bio-social determinants for house infestation by nondomiciliated Triatoma dimidiata in the Yucatan península, Mexico. PLoS Negl Trop Dis 7:e2466

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumonteil E, Ramirez-Sierra MJ, Pérez-Carrillo S et al (2018) Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Sci Rep 8:4140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dye C (1992) The analysis of parasite transmission by bloodsucking insects. Annu Rev Entomol 37:1–19

    Article  CAS  PubMed  Google Scholar 

  • Ehrenberg JP, Ault SK (2005) Neglected diseases of neglected populations: thinking to reshape the determinants of health in Latin America and the Caribbean. BMC Public Health 5:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Eickhoff CS, Dunn BA, Sullivan NA et al (2013) Comparison of the infectivity of Trypanosoma cruzi insect–derived metacyclic trypomastigotes after mucosal and cutaneous contaminative challenges. Mem Inst Oswaldo Cruz 108:508–511

    Article  PubMed  PubMed Central  Google Scholar 

  • Elliot SL, Rodrigues JO, Lorenzo MG et al (2015) Trypanosoma cruzi, etiological agent of Chagas disease, is virulent to its triatomine vector Rhodnius prolixus in a temperature-dependent manner. PLoS Negl Trop Dis 9:e0003646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellis BR, Wilcox BA (2009) The ecological dimensions of vector-borne disease research and control. Cad Saude Publica 25(supl1):S155–S167

    Article  PubMed  Google Scholar 

  • El-Sayed AM, Scarborough P, Seemann L et al (2012) Social network analysis and agent-based modeling in social epidemiology. Epidemiol Perspect Innov 9:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Enriquez GF, Cardinal MV, Orozco MM et al (2013) Discrete typing units of Trypanosoma cruzi identified in rural dogs and cats in the humid Argentinean Chaco. Parasitology 140:303–308

    Article  CAS  PubMed  Google Scholar 

  • Enriquez GF, Bua J, Orozco MM et al (2014) High levels of Trypanosoma cruzi DNA determined by qPCR and infectiousness to Triatoma infestans support dogs and cats are major sources of parasites for domestic transmission. Infect Genet Evol 25:36–43

    Article  CAS  PubMed  Google Scholar 

  • Fabrizio MC, Schweigmann NJ, Bartoloni NJ (2016) Analysis of the transmission of Trypanosoma cruzi infection through hosts and vectors. Parasitology 143:1168–1178

    Article  PubMed  Google Scholar 

  • Feliciangeli MD, Campbell-Lendrum D, Martinez C et al (2003) Chagas disease control in Venezuela: lessons for the Andean region and beyond. Trends Parasitol 19:44–49

    Article  PubMed  Google Scholar 

  • Fernández MP, Gaspe MS, Gürtler RE (2019a) Inequalities in the social determinants of health and Chagas disease transmission risk in indigenous and creole households in the argentine Chaco. Parasit Vectors 12:184

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández MP, Gaspe MS, Sartor P et al (2019b) Human Trypanosoma cruzi infection is driven by eco-social interactions in rural communities of the Argentine Chaco. PLoS Negl Trop Dis 13:e0007430

    Article  PubMed  PubMed Central  Google Scholar 

  • Flores-Ferrer A, Waleckx E, Rascalou G et al (2019) Trypanosoma cruzi transmission dynamics in a synanthropic and domesticated host community. PLoS Negl Trop Dis 13:e000790

    Article  Google Scholar 

  • Forattini OP, Ferreira OA, Silva EOR et al (1977) Aspectos ecológicos da tripanossomíase americana: IX-Variação e mobilidade de Panstrongylus megistus em ecótopos artificiais. Rev Saúde Pública 11:199–213

    Article  CAS  PubMed  Google Scholar 

  • Fortin MJ, Dale MRT (2005) Spatial analysis: a guide for ecologist. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Freitas JLP (1950) Observacões sôbre xenodiagnósticos practicados em reservatórios domésticos e silvestres do Trypanosoma cruzi em uma localidade endémica da moléstia de Chagas no estado de São Paulo. Hosp Rio Janeiro 38:63–71

    Google Scholar 

  • Fürst T, Raso G, Acka CA et al (2009) Dynamics of socioeconomic risk factors for neglected tropical diseases and malaria in an armed conflict. PLoS Negl Trop Dis 3:e513

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia ES, Ratcliffe NA, Whitten MM et al (2007) Exploring the role of insect host factors in the dynamics of Trypanosoma cruziRhodnius prolixus interactions. J Insect Physiol 53:11–21

    Article  CAS  PubMed  Google Scholar 

  • Gardiner BO, Maddrell SH (1972) Techniques for routine and large-scale rearing of Rhodnius prolixus Stål (Hem., Reduviidae). Bull Entomol Res 61:505–515

    Article  Google Scholar 

  • Gaspe MS, Gurevitz JM, Gürtler RE et al (2013) Origins of house reinfestation with Triatoma infestans after insecticide spraying in the Argentine Chaco using wing geometric morphometry. Infect Genet Evol 17:93–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaspe MS, Provecho YM, Cardinal MV et al (2015) Ecological and sociodemographic determinants of house infestation with Triatoma infestans in indigenous communities in the Argentine Chaco. PLoS Negl Trop Dis 9:e0003614

    Article  PubMed Central  CAS  Google Scholar 

  • Gaspe MS, Provecho YM, Fernández MP et al (2018) Beating the odds: sustained Chagas disease vector control in remote indigenous communities of the Argentine Chaco over a seven-year period. PLoS Negl Trop Dis 12:e0006804

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaspe MS, Fernández MP, Cardinal MV et al (2020) Urbanisation, risk stratification and house infestation with the main vector Triatoma infestans in an endemic municipality of the Argentine Chaco. Parasit Vectors 13:316

    Article  PubMed  PubMed Central  Google Scholar 

  • Giojalas LC, Catalá SS, Asin SN et al (1990) Seasonal changes in infectivity of domestic populations of Triatoma infestans. Trans R Soc Trop Med Hyg 84:439–442

    Article  CAS  PubMed  Google Scholar 

  • Gomes JE, Azambuja P, Garcia ES (1990) Comparative studies on the growth and reproductive performances of Rhodnius prolixus reared on different blood sources. Mem Inst Oswaldo Cruz 85:299–304

    Article  CAS  PubMed  Google Scholar 

  • Gorla DE (1991) Recovery of Triatoma infestans populations after insecticide application: an experimental field study. Med Vet Entomol 5:311–324

    Article  CAS  PubMed  Google Scholar 

  • Gorla DE (1992) Population dynamics and control of Triatoma infestans. Med Vet Entomol 6:91–97

    Article  CAS  PubMed  Google Scholar 

  • Gorla DE, Noireau F (2017) Geographic distribution of Triatominae vectors in America. In: Tibayrenc M, Telleria J (eds) American Trypanosomiasis Chagas disease: one hundred years of research, 2nd edn. Elsevier, Saint Louis, pp 197–222

    Chapter  Google Scholar 

  • Gorla DE, Schofield CJ (1989) Population dynamics of Triatoma infestans under natural climatic conditions in the Argentine Chaco. Med Vet Entomol 3:179–194

    Article  CAS  PubMed  Google Scholar 

  • Gourbière S, Dorn P, Tripet F et al (2012) Genetics and evolution of triatomines: from phylogeny to vector control. Heredity (Edinb) 108:190–202

    Article  Google Scholar 

  • Guarneri AA, Lorenzo MG (2017) Triatomine physiology in the context of trypanosome infection. J Insect Physiol 97:66–76

    Article  CAS  PubMed  Google Scholar 

  • Guhl F, Lazdins-Helds J, Grupo de trabajo científico sobre la enfermedad de Chagas (2007) Reporte sobre la enfermedad de Chagas. World Health Organization, Geneva

    Google Scholar 

  • Gurevitz JM, Ceballos LA, Gaspe MS et al (2011) Factors affecting infestation by Triatoma infestans in a rural area of the humid Chaco in Argentina: a multi-model inference approach. PLoS Negl Trop Dis 5:e1365

    Article  Google Scholar 

  • Gurevitz JM, Gaspe MS, Enriquez GF et al (2013) Intensified surveillance and insecticide-based control of the Chagas disease vector Triatoma infestans in the Argentinean Chaco. PLoS Negl Trop Dis 7:e2158

    Article  PubMed  PubMed Central  Google Scholar 

  • Gürtler RE (2009) Sustainability of vector control strategies in the Gran Chaco region: current challenges and possible approaches. Mem Inst Oswaldo Cruz 104:52–59

    Article  PubMed  Google Scholar 

  • Gürtler RE, Cardinal MV (2015) Reservoir host competence and the epidemiologic role of domestic and commensal hosts in the transmission of Trypanosoma cruzi. Acta Trop 151:32–50

    Article  PubMed  Google Scholar 

  • Gürtler RE, Kravetz FO, Petersen RM et al (1990) The prevalence of Trypanosoma cruzi and the demography of dog populations after insecticidal spraying of houses: a predictive model. Ann Trop Med Parasitol 84:313323

    Article  Google Scholar 

  • Gürtler RE, Cecere MC, Castañera MB et al (1996) Probability of infection with Trypanosoma cruzi of the vector Triatoma infestans fed on infected humans and dogs in Northwest Argentina. Am J Trop Med Hyg 55:24–31

    Article  PubMed  Google Scholar 

  • Gürtler RE, Cohen JE, Cecere MC et al (1997) Shifting host choices of the vector of Chagas disease Triatoma infestans in relation to the availability of hosts in houses in north-West Argentina. J Appl Ecol 34:699–715

    Article  Google Scholar 

  • Gürtler RE, Chuit R, Cecere MC et al (1998a) Household prevalence of seropositivity for Trypanosoma cruzi in three rural villages in Northwest Argentina: environmental, demographic, and entomologic associations. Am J Trop Med Hyg 59:741–749

    Article  PubMed  Google Scholar 

  • Gürtler RE, Cohen JE, Cecere MC et al (1998b) Influence of humans and domestic animals on the household prevalence of Trypanosoma cruzi in Triatoma infestans populations in Northwest Argentina. Am J Trop Med Hyg 58:748–758

    Article  PubMed  Google Scholar 

  • Gürtler RE, Cecere MC, Canale DM et al (1999) Monitoring house reinfestation by vectors of Chagas disease: a comparative trial of detection methods during a four-year follow-up. Acta Trop 72:213–234

    Article  PubMed  Google Scholar 

  • Gürtler RE, Canale DM, Spillmann C et al (2004) Effectiveness of residual spraying with deltamethrin and permethrin on peridomestic populations of Triatoma infestans in rural western Argentina: a district-wide randomized trial. Bull World Health Organ 82:196–220

    PubMed  PubMed Central  Google Scholar 

  • Gürtler RE, Cecere MC, Lauricella MA et al (2005) Incidence of Trypanosoma cruzi infection among children following domestic reinfestation after insecticide spraying in rural northwestern Argentina. Am J Trop Med Hyg 73:95–103

    Article  PubMed  Google Scholar 

  • Gürtler RE, Cecere MC, Lauricella MA et al (2007a) Domestic dogs and cats as sources of Trypanosoma cruzi infection in rural northwestern Argentina. Parasitology 134:69–82

    Article  PubMed  Google Scholar 

  • Gürtler RE, Kitron U, Cecere MC et al (2007b) Sustainable vector control and management of Chagas disease in the Gran Chaco, Argentina. Proc Natl Acad Sci USA 104:16194–16199

    Article  PubMed  PubMed Central  Google Scholar 

  • Gürtler RE, Ceballos LA, Ordóñez-Krasnowski P et al (2009) Strong host-feeding preferences of the Chagas disease vector Triatoma infestans modified by vector density: implications for the epidemiology of Chagas disease. PLoS Negl Trop Dis 3:e447

    Article  PubMed  PubMed Central  Google Scholar 

  • Gürtler RE, Cecere MC, Vázquez-Prokopec GM et al (2014a) Domestic animal hosts strongly influence human-feeding rates of the Chagas disease vector Triatoma infestans in Argentina. PLoS Negl Trop Dis 8:e2894

    Article  PubMed  PubMed Central  Google Scholar 

  • Gürtler RE, Cecere MC, Fernández MP et al (2014b) Key source habitats and potential dispersal of Triatoma infestans populations in Northwestern Argentina: implications for vector control. PLoS Negl Trop Dis 8:e3238

    Article  PubMed  PubMed Central  Google Scholar 

  • Gürtler RE, Fernández MP, Cecere MC et al (2017) Body size and hosts of Triatoma infestans populations affect the size of blood meal contents and female fecundity in rural northwestern Argentina. PLoS Negl Trop Dis 11:6097

    Google Scholar 

  • Guzman-Tapia Y, Ramírez-Sierra MJ, Dumonteil E (2007) Urban infestation by Triatoma dimidiata in the City of Mérida, Yucatán, México. Vector-Borne Zoonotic Dis 7:597–606

    Article  CAS  PubMed  Google Scholar 

  • Hagenlocher M, Castro MC (2015) Mapping malaria risk and vulnerability in the United Republic of Tanzania: a spatial explicit model. Popul Health Metrics 13:1–14

    Article  Google Scholar 

  • Hall LS, Krausman PR, Morrison ML (1997) The habitat concept and a plea for standard terminology. Wildlife Soc Bull 25:171–182

    Google Scholar 

  • Hankivsky O, Christoffersen A (2008) Intersectionality and the determinants of health: a Canadian perspective. Crit Public Health 18:271–283

    Article  Google Scholar 

  • Hotez P (2014) Ten global “hotspots” for the neglected tropical diseases. PLoS Negl Trop Dis 8:e2496

    Article  PubMed  PubMed Central  Google Scholar 

  • Hotez PJ, Bottazzi ME, Franco-Paredes C et al (2008) The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl Trop Dis 2:e300

    Article  PubMed  PubMed Central  Google Scholar 

  • Houweling TAJ, Karim-Kos HE, Kulik MC et al (2016) Socioeconomic inequalities in neglected tropical diseases: a systematic review. PLoS Negl Trop Dis 10:e0004546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Howard EJ, Xiong X, Carlier Y et al (2014) Frequency of the congenital transmission of Trypanosoma cruzi: a systematic review and meta-analysis. Int J Obstet Gynaecol 121:22–33

    Article  CAS  Google Scholar 

  • Howe LD, Galobardes B, Matijasevich A et al (2012) Measuring socio-economic position for epidemiological studies in low- and middle-income countries: a methods of measurement in epidemiology paper. Int J Epidemiol 41:871–886

    Article  PubMed  PubMed Central  Google Scholar 

  • Jácome-Pinilla D, Hincapie-Peñaloza E, Ortiz MI et al (2015) Risks associated with dispersive nocturnal flights of sylvatic Triatominae to artificial lights in a model house in the northeastern plains of Colombia. Parasit Vectors 8:600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jansen AM, Xavier SC, Roque AL (2017) Ecological aspects of Trypanosoma cruzi: wild hosts and reservoirs. In: Tibayrenc M, Telleria J (eds) American Trypanosomiasis Chagas disease: one hundred years of research, 2nd edn. Elsevier, Saint Louis, pp 243–264

    Chapter  Google Scholar 

  • Jirón LF, Zeledón R (1982) Preferencias alimentarias de tres especies de Triatominae (Hemiptera: Reduviidae) en condiciones experimentales. Rev Biol Trop 30:151–159

    PubMed  Google Scholar 

  • Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecol Lett 9:485–498

    Article  CAS  PubMed  Google Scholar 

  • Kelly DW, Thompson CE (2000) Epidemiology and optimal foraging: modelling the ideal-free distribution of insect vectors. Parasitology 120:319–327

    Article  PubMed  Google Scholar 

  • Kirk ML, Schofield CJ (1987) Density-dependent timing of defaecation by Rhodnius prolixus, and its implications for the transmission of Trypanosoma cruzi. Trans R Soc Trop Med Hyg 81:348–349

    Article  CAS  PubMed  Google Scholar 

  • Lardeux F, Depickère S, Aliaga C et al (2015) Experimental control of Triatoma infestans in poor rural villages of Bolivia through community participation. Trans R Soc Trop Med Hyg 109:150–158

    Article  PubMed  PubMed Central  Google Scholar 

  • Lazzari CR, Pereira MH, Lorenzo MG (2013) Behavioural biology of Chagas disease vectors. Mem Inst Oswaldo Cruz 108(Suppl 1):34–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Ledesma Patiño OSR, Ribas Meneclierr CA, Kalalo E et al (1992) Epidemiología, clínica y laboratorio de la enfermedad de Chagas aguda en Santiago del Estero. In: Madoery RJ, Madoery C, Cámera MI (eds) Actualizaciones de la enfermedad de Chagas. Libro del Organismo Oficial del Congreso Nacional de Medicina, Córdoba, pp 39–50

    Google Scholar 

  • Lee BY, Bacon KM, Bottazzi ME et al (2013) Global economic burden of Chagas disease: a computational simulation model. Lancet Infect Dis 13:342–348

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehane MJ (2005) The biology of blood-sucking in insects, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Levy MZ, Bowman NM, Kawai V et al (2006) Periurban Trypanosoma cruzi-infected Triatoma infestans, Arequipa, Peru. Emerg Infect Dis 12:1345–1352

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy MZ, Kawai V, Bowman NM et al (2007) Targeted screening strategies to detect Trypanosoma cruzi infection in children. PLoS Negl Trop Dis 1:e103

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy MZ, Bowman NM, Kawai V et al (2009) Spatial patterns in discordant diagnostic test results for Chagas disease: links to transmission hotspots. Clin Infect Dis 48:1104–1106

    Article  PubMed  Google Scholar 

  • Levy MZ, Barbu CM, Castillo-Neyra R et al (2014) Urbanization, land tenure security and vector-borne Chagas disease. Proc R Soc B Biol Sci 281:20141003–20141003

    Article  Google Scholar 

  • Lima MM, Sarquis O, de Oliveira TG et al (2012) Investigation of Chagas disease in four periurban areas in northeastern Brazil: epidemiologic survey in man, vectors, non-human hosts and reservoirs. Trans R Soc Trop Med Hyg 106:143–149

    Article  PubMed  Google Scholar 

  • López A, Crocco L, Morales G et al (1999) Feeding frequency and nutritional status of peridomestic populations of Triatoma infestans from Argentina. Acta Trop 73:275–281

    Article  PubMed  Google Scholar 

  • López-Cancino SA, Tun-Ku E, De la Cruz-Felix HK et al (2015) Landscape ecology of Trypanosoma cruzi in the southern Yucatan Peninsula. Acta Trop 151:58–72

    Article  PubMed  Google Scholar 

  • Lorenzo Figueiras AN, Lazzari CR (1998) Aggregation behaviour and interspecific responses in three species of Triatominae. Mem Inst Oswaldo Cruz 93:133–137

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo MG, Lazzari CR (1996) The spatial pattern of defaecation in Triatoma infestans and the role of faeces as a chemical mark of the refuge. J Insect Physiol 42:903–907

    Article  CAS  Google Scholar 

  • Lorenzo MG, Lazzari CR (1999) Temperature and relative humidity affect the selection of shelters by Triatoma infestans, vector of Chagas disease. Acta Trop 72:241–249

    Article  CAS  PubMed  Google Scholar 

  • Lucero RH, Brusés BL, Cura CI et al (2016) Chagas’ disease in aboriginal and creole communities from the Gran Chaco region of Argentina: Seroprevalence and molecular parasitological characterization. Infect Genet Evol 41:84–92

    Article  CAS  PubMed  Google Scholar 

  • Lugones H, Ledesma O, Storino R et al (1994) Chagas agudo. In: Storino R, Milei J (eds) Enfermedad de Chagas. Mosby Doyma, Buenos Aires, pp 209–234

    Google Scholar 

  • Macchiaverna NP, Gaspe MS, Enriquez GF et al (2015) Trypanosoma cruzi infection in Triatoma sordida before and after community-wide residual insecticide spraying in the Argentinean Chaco. Acta Trop 143:97–102

    Article  PubMed  Google Scholar 

  • Macchiaverna NP, Enriquez GF, Buscaglia CA (2018) New human isolates confirm the predominance of hybrid lineages in the Argentine domestic cycle of Trypanosoma cruzi. Infect Genet Evol 66:229–235

    Article  CAS  PubMed  Google Scholar 

  • Macchiaverna NP, Enriquez GF, Bua J et al (2020) Human infectiousness and parasite load in chronic patients seropositive for Trypanosoma cruzi in a rural area of the Argentine Chaco. Infect Genet Evol 78:104062

    Article  CAS  PubMed  Google Scholar 

  • MacGregor-Fors I (2011) Misconceptions or misunderstandings? On the standardization of basic terms and definitions in urban ecology. Landsc Urban Plan 100:347–349

    Article  Google Scholar 

  • Maguire JH, Mott KE, Hoff R et al (1982) A three-year follow-up study of infection with Trypanosoma cruzi and electrocardiographic abnormalities in a rural community in Northeast Brazil. Am J Trop Med Hyg 31:42–47

    Article  CAS  PubMed  Google Scholar 

  • Maidana CA (2011) Migrantes Toba (Qom). Procesos de territorización y construcción de identidades. http://sedici.unlp.edu.ar/handle/10915/21132

  • Manderson L, Aagaard-Hansen J, Allotey P et al (2009) Social research on neglected diseases of poverty: continuing and emerging themes. PLoS Negl Trop Dis 3:e332

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcili A, Lima L, Cavazzana M et al (2009) A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2B genes and genotyping based on ITS1 rDNA. Parasitology 136:641–655

    Article  CAS  PubMed  Google Scholar 

  • Marliére NP, Latorre-Estivalis JM, Lorenzo MG et al (2015) Trypanosomes modify the behavior of their insect hosts: effects on locomotion and on the expression of a related gene. PLoS Negl Trop Dis 9:e0003973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marsden PD, Virgens D, Magalhães I et al (1982) Domestic ecology of Triatoma infestans in Mambaí, Goiás-Brazil. Rev Inst Med Trop São Paulo 24:364–373

    CAS  PubMed  Google Scholar 

  • Matter HC, Daniels TJ (2000) Dog ecology and population biology. In: Macpherson CNL, Meslin FX, Wandeler AI (eds) Dogs, Zoonoses and public health. CABI Publication, New York, pp 17–50

    Chapter  Google Scholar 

  • McEwen PK, Lehane MJ, Whitaker CJ (1993) The effect of adult population density on flight initiation in Triatoma infestans (Klug) (Hem., Reduviidae). J Appl Entomol 116:321–325

    Article  Google Scholar 

  • Meadows DH (2008) Thinking in systems: a primer. Earthscan, London

    Google Scholar 

  • Medone P, Ceccarelli S, Parham PE et al (2015) The impact of climate change on the geographic distribution of two vectors of Chagas disease: implications for the force of infection. Philos Trans R Soc B 370:20130560

    Article  Google Scholar 

  • Medrano-Mercado N, Ugarte-Fernandez R, Butrón V et al (2008) Urban transmission of Chagas disease in Cochabamba, Bolivia. Mem Inst Oswaldo Cruz 103:423–430

    Article  CAS  PubMed  Google Scholar 

  • Mejía-Jaramillo AM, Agudelo-Uribe LA, Dib JC et al (2014) Genotyping of Trypanosoma cruzi in a hyper-endemic area of Colombia reveals an overlap among domestic and sylvatic cycles of Chagas disease. Parasit Vectors 7:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Miles MA, Feliciangeli MD, Rojas de Arias A (2003) American trypanosomiasis (Chagas’ disease) and the role of molecular epidemiology in guiding control strategies. Br Med J 326:1444–1448

    Article  Google Scholar 

  • Minter DM (1976) Feeding patterns of some Triatominae vectors. In: New approaches in American Trypanosomiasis research, Pan American health organization scientific publication no. 318, Washington, pp 33–47

    Google Scholar 

  • Minter-Goedbloed E, Minter DM, Marshall TF (1978) Quantitative comparison between xenodiagnosis and haemoculture in the detection of Trypanosoma (Schizotrypanum) cruzi in experimental and natural chronic infections. Trans R Soc Trop Med Hyg 72:217–225

    Article  CAS  PubMed  Google Scholar 

  • Monroy C, Bustamante DM, Pineda S et al (2009) House improvements and community participation in the control of Triatoma dimidiate re-infestation in Jutiapa, Guatemala. Cad Saude Publica 25:S168–S178

    Article  PubMed  Google Scholar 

  • Moretti E, Castro I, Franceschi C et al (2010) Chagas disease: serological and electrocardiographic studies in Wichi and Creole communities of Misión Nueva Pompeya, Chaco, Argentina. Mem Inst Oswaldo Cruz 105:621–627

    Article  PubMed  Google Scholar 

  • Morillo CA, Marin-Neto JA, Avezum A et al (2015) Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med 373:1295–1306

    Article  CAS  PubMed  Google Scholar 

  • Mott KE, Lehman JS, Hoff R et al (1976) The epidemiology and household distribution of seroreactivity to Trypanosoma cruzi in a rural community in Northeast Brazil. Am J Trop Med Hyg 25:552–562

    Article  CAS  PubMed  Google Scholar 

  • Mott KE, Muniz TM, Lehman JS Jr et al (1978a) House construction, triatomine distribution, and household distribution of seroreactivity to Trypanosoma cruzi in a rural community in Northeast Brazil. Am J Trop Med Hyg 27:1116–1122

    Article  CAS  PubMed  Google Scholar 

  • Mott KE, Mota EA, Sherlock I et al (1978b) Trypanosoma cruzi infection in dogs and cats and household seroreactivity to T. cruzi in a rural community in Northeast Brazil. Am J Trop Hyg 27:1123–1127

    Article  CAS  Google Scholar 

  • Muench H (1959) Catalytic models in epidemiology. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Neves DP (1971) Influencia da temperatura na evolucão do Trypanosoma cruzi em triatominos. Rev Inst Med Trop São Paulo 13:155–161

    CAS  PubMed  Google Scholar 

  • Nijhout HF, Riddiford LM, Mirth C et al (2014) The developmental control of size in insects. Wiley Interdiscip Rev Dev Biol 3:113–134

    Article  PubMed  Google Scholar 

  • Noireau F, Dujardin JP (2010) Biology of Triatominae. In: Tibayrenc M, Telleria J (eds) American Trypanosomiasis Chagas disease: one hundred years of research. Elsevier, Saint Louis, pp 149–168

    Chapter  Google Scholar 

  • Nouvellet P, Dumonteil E, Gourbière S (2013) The improbable transmission of Trypanosoma cruzi to human: the missing link in the dynamics and control of Chagas disease. PLoS Negl Trop Dis 7:e2505

    Article  PubMed  PubMed Central  Google Scholar 

  • Nouvellet P, Cucunubá ZM, Gourbière S (2015) Ecology, evolution and control of Chagas disease: a century of neglected modelling and a promising future. Adv Parasitol 87:135–191

    Article  PubMed  Google Scholar 

  • Núñez JA, Segura EL (1987) Rearing of Triatominae. In: Brenner RR, Stoka AM (eds) Chagas’ disease vectors, vol II. CRC Press, Florida, pp 31–40

    Google Scholar 

  • Ordóñez-Krasnovsky P, Lanatti L, Gaspe MS et al (2020) Domestic host availability modifies human-triatomine contact and host shifts of the Chagas disease vector Triatoma infestans in the humid Argentine Chaco. Med Vet Entomol 34:459–469

    Article  Google Scholar 

  • Orozco MM, Enriquez GF, Alvarado-Otegui JA et al (2013) New sylvatic hosts of Trypanosoma cruzi and their reservoir competence in the Humid Chaco of Argentina: a longitudinal study. Am J Trop Med Hyg 88:872–882

    Article  PubMed  PubMed Central  Google Scholar 

  • Pacheco-Tucuch FS, Ramirez-Sierra MJ, Gourbière S et al (2012) Public street lights increase house infestation by the Chagas disease vector Triatoma dimidiata. PLoS One 7:e36207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payet V, Ramirez-Sierra M, Rabinovich JE et al (2009) Variations in sex ratio, feeding, and fecundity of Triatoma dimidiata (Hemiptera: Reduviidae) among habitats in the Yucatan Peninsula, Mexico. Vector-Borne Zoonotic Dis 9:243–251

    Article  CAS  PubMed  Google Scholar 

  • Pennington PM, Messenger LA, Reina J et al (2015) The Chagas disease domestic transmission cycle in Guatemala: parasite-vector switches and lack of mitochondrial co-diversification between Triatoma dimidiata and Trypanosoma cruzi subpopulations suggest non-vectorial parasite dispersal across the Motagua valley. Acta Trop 151:80–87

    Article  PubMed  Google Scholar 

  • Perlowagora-Szumlewicz A (1975) Laboratory colonies of Triatominae, biology, and population dynamics. In: New approaches in American Trypanosomiasis research. Pan American Health Organization Scientific Publication no. 318, Washington, pp 18–21

    Google Scholar 

  • Peterson JK, Bartsch SM, Lee BY et al (2015) Broad patterns in domestic vector-borne Trypanosoma cruzi transmission dynamics: synanthropic animals and vector control. Parasit Vectors 8:537

    Article  PubMed  PubMed Central  Google Scholar 

  • Piccinali RV, Canale DM, Sandoval AE et al (2010) Triatoma infestans bugs in southern Patagonia. Emerg Infect Dis 16:887–889

    Article  PubMed  PubMed Central  Google Scholar 

  • Piesman J, Sherlock IA, Christensen HA (1983) Host availability limits population density of Panstrongylus megistus. Am J Trop Med Hyg 32:1445–1450

    Article  CAS  PubMed  Google Scholar 

  • Piesman J, Sherlock IA, Mota E (1985) Association between household triatomine density and incidence of Trypanosoma cruzi infection during a nine-year study in Castro Alves, Bahia, Brazil. Am J Trop Med Hyg 34:866–869

    Article  CAS  PubMed  Google Scholar 

  • Pifano CF (1973) La dinámica epidemiológica de la enfermedad de Chagas en el Valle de los Naranjos, Estado Carabobo, Venezuela. II. La infección chagásica en la población rural del área. Arch Venez Med Trop Parasitol Med 5:31–45

    Google Scholar 

  • Pluciński MM, Ngonghala CN, Getz WM et al (2013) Clusters of poverty and disease emerge from feedbacks on an epidemiological network. J R Soc Interface 10:20120656

    Article  PubMed  PubMed Central  Google Scholar 

  • Provecho YM, Gaspe MS, Fernández MP et al (2017) House reinfestation with Triatoma infestans (Hemiptera: Reduviidae) after community-wide spraying with insecticides in the Argentine Chaco: a multifactorial process. J Med Entomol 54:646–657

    Article  PubMed  Google Scholar 

  • Rabinovich JE (1972) Vital statistics of triatominae (Hemiptera: Reduviidae) under laboratory conditions. I Triatoma infestans. Klug J Med Entomol 9:351–370

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich JE (1985) Ecología poblacional de los triatominos. In: Carcavallo RU, Rabinovich JE, Tonn RJ (eds) Factores Biológicos y Ecológicos en la Enfermedad de Chagas, 1. Servicio Nacional de Chagas (Argentina), Buenos Aires, pp 121–147

    Google Scholar 

  • Rabinovich JE, Feliciangeli MD (2015) Vital statistics of Triatominae (Hemiptera: Reduviidae) under laboratory conditions: IV. Panstrongylus geniculatus. J Med Entomol 52:797–805

    Article  PubMed  Google Scholar 

  • Rabinovich JE, Leal JA, Feliciangeli de Piñero D (1979) Domiciliary biting frequency and blood ingestion of the Chagas’s disease vector Rhodnius prolixus Ståhl (Hemiptera: Reduviidae), in Venezuela. Trans R Soc Trop Med Hyg 73:272–283

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich JE, Solarz ND, Gürtler RE et al (1990) Probability of transmission of Chagas disease by Triatoma infestans (Hemiptera: Reduviidae) in an endemic area of Santiago del Estero, Argentina. Bull World Health Organ 68:737–746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinovich JE, Kitron UD, Obed Y et al (2011) Ecological patterns of blood-feeding by kissing-bugs (Hemiptera: Reduviidae: Triatominae). Mem Inst Oswaldo Cruz 106:479–494

    Article  PubMed  Google Scholar 

  • Ramirez-Sierra MJ, Herrera-Aguilar M, Gourbière S et al (2010) Patterns of house infestation dynamics by non-domiciliated Triatoma dimidiata reveal a spatial gradient of infestation in rural villages and potential insect manipulation by Trypanosoma cruzi. Tropical Med Int Health 15:77–86

    Article  Google Scholar 

  • Ramsey JM, Cruz-Celis A, Salgado L et al (2003) Efficacy of pyrethroid insecticides against domestic and peridomestic populations of Triatoma pallidipennis and Triatoma barberi (Reduviidae: Triatominae) vectors of Chagas’ disease in Mexico. J Med Entomol 40:912–920

    Article  CAS  PubMed  Google Scholar 

  • Ramsey JM, Alvear AL, Ordoñez R et al (2005) Risk factors associated with house infestation by the Chagas disease vector Triatoma pallidipennis in Cuernavaca metropolitan area, Mexico. Med Vet Entomol 19:219–228

    Article  CAS  PubMed  Google Scholar 

  • Ramsey JM, Gutiérrez-Cabrera AE, Salgado-Ramírez et al (2012) Ecological connectivity of Trypanosoma cruzi reservoirs and Triatoma pallidipennis hosts in an anthropogenic landscape with endemic Chagas disease. PLoS One 7:e46013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raso G, Utzinger J, Silue KD et al (2005) Disparities in parasitic infections, perceived ill health and access to health care among poorer and less poor schoolchildren of rural Cote d’Ivoire. Tropical Med Int Health 10:42–57

    Article  Google Scholar 

  • Rebosolán JB, Terzano R (1958) Quinientos casos de chagasosis aguda en Santiago del Estero. Mis Est Patol Reg Arg 87–88:55–57

    Google Scholar 

  • Rocha e Silva EO, Souza JMP, Andrade JCR et al (1977) Preferencia alimentar (entre sangue humano e ave) dos Triatoma sordida encontrados em casas habitadas da região norte do estado de São Paulo, Brasil. Rev Saude Publica 11:258–269

    Article  PubMed  Google Scholar 

  • Rodríguez-Planes LI, Vazquez-Prokopec GM, Cecere MC et al (2016) Selective insecticide applications directed against Triatoma infestans (Hemiptera: Reduviidae) affected a nontarget secondary vector of Chagas disease, Triatoma garciabesi. J Med Entomol 53:144–151

    Article  PubMed  Google Scholar 

  • Rodríguez-Planes LR, Gaspe MS, Enriquez GF et al (2018) Habitat-specific occupancy and a metapopulation model of Triatoma sordida (Hemiptera: Reduviidae), a secondary vector of Chagas disease, in Northeastern Argentina. J Med Entomol 55:370–381

    Article  PubMed  Google Scholar 

  • Rodríguez-Planes LI, Gaspe MS, Enriquez GF et al (2020) Impacts of residual insecticide spraying on house infestation with Triatoma sordida and co-occurrence of Triatoma infestans: a three-year follow-up in northeastern Argentina. Acta Trop 202:105251

    Article  PubMed  CAS  Google Scholar 

  • Rojas de Arias A, Ferro EA, Ferreira ME et al (1999) Chagas disease vector control through different intervention modalities in endemic localities of Paraguay. Bull World Health Organ 77:331–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas de Arias A, Abad-Franch F, Acosta N et al (2012) Post-control surveillance of Triatoma infestans and Triatoma sordida with chemically-baited sticky traps. PLoS Negl Trop Dis 6:e1822

    Article  PubMed  PubMed Central  Google Scholar 

  • Romaña C (1963) Enfermedad de Chagas. Lopez Libreros Editores, Buenos Aires

    Google Scholar 

  • Rosal GG, Nogueda-Torres B, Villagrán ME et al (2018) Chagas disease: importance of rats as reservoir hosts of Trypanosoma cruzi (Chagas, 1909) in western Mexico. J Infect Public Health 11:230–233

    Article  PubMed  Google Scholar 

  • Rosenbaum M, Cerisola JA (1961) Epidemiología de la Enfermedad de Chagas. O Hospital 60:75–123

    Google Scholar 

  • Samuels AM, Clark EH, Galdos-Cardenas G et al (2013) Epidemiology of and impact of insecticide spraying on Chagas disease in communities in the Bolivian Chaco. PLoS Negl Trop Dis 7:e2358

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandoval CM, Gutiérrez R, Luna S et al (2000a) High density of Rhodnius prolixus in a rural house in Colombia. Trans R Soc Trop Med Hyg 94:372–373

    Article  CAS  PubMed  Google Scholar 

  • Sandoval CM, Joya MI, Gutierez R et al (2000b) Cleptohaematophagy of the triatomine bug Belminus herreri. Med Vet Entomol 14:100–101

    Article  CAS  PubMed  Google Scholar 

  • Schaub GA (1992) The effects of trypanosomatids on insects. Adv Parasitol 31:255–319

    Article  CAS  PubMed  Google Scholar 

  • Schmunis GA, Yadon ZE (2010) Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop 115:14–21

    Article  PubMed  Google Scholar 

  • Schofield CJ (1980) Nutritional status of domestic populations of Triatoma infestans. Trans R Soc Trop Med Hyg 74:770–778

    Article  CAS  PubMed  Google Scholar 

  • Schofield CJ (1982) The role of blood intake in density regulation of populations of Triatoma infestans (Klug) (Hemiptera: Reduviidae). Bull Entomol Res 72:617–629

    Article  Google Scholar 

  • Schofield CJ (1985) Population dynamics and control of Triatoma infestans. Ann Soc Belge Med Trop 65:149–164

    Google Scholar 

  • Schofield CJ (1994) Triatominae—biology and control. Eurocommunica Publications, Bognor Regis

    Google Scholar 

  • Sicuri E, Muñoz J, Pinazo MJ et al (2011) Economic evaluation of Chagas disease screening of pregnant Latin American women and of their infants in a non endemic area. Acta Trop 118:110–117

    Article  PubMed  Google Scholar 

  • Solar O, Irwin A (2010) A conceptual framework for action on the social determinants of health. Social determinants of health discussion. Paper 2 (policy and practice). World Health Organization, Geneva

    Google Scholar 

  • Sosa-Estani S, Dri LL, Touris C et al (2009) Transmisión vectorial y congénita del Trypanosoma cruzi en Las Lomitas, Formosa. Medicina (Buenos Aires) 69:424–430

    Google Scholar 

  • Spagnuolo AM, Shillor M, Kingsland L et al (2012) A logistic delay differential equation model for Chagas disease with interrupted spraying schedules. J Biol Dyn 6:377–394

    Article  PubMed  Google Scholar 

  • Spiegel J, Bennett S, Hattersley L et al (2005) Barriers and bridges to prevention and control of dengue: the need for a social–ecological approach. EcoHealth 2:273–290

    Article  Google Scholar 

  • Stoddard ST, Morrison AC, Vazquez-Prokopec GM et al (2009) The role of human movement in the transmission of vector-borne pathogens. PLoS Negl Trop Dis 3:e481

    Article  PubMed  PubMed Central  Google Scholar 

  • Taranto NJ, Cajal SP, De Marzi MC et al (2003) Clinical status and parasitic infection in a Wichí aboriginal community in Salta, Argentina. Trans R Soc Trop Med Hyg 97:554–558

    Article  CAS  PubMed  Google Scholar 

  • Trumper E, Gorla DE (1991) Density dependent timing of defaecation by Triatoma infestans. Trans R Soc Trop Med Hyg 85:800–802

    Article  CAS  PubMed  Google Scholar 

  • Valle D, Lima Gomes JEP, Goldenberg S et al (1987) Rhodnius prolixus vitellogenesis: dependence upon the blood source. J Insect Physiol 33:249–254

    Article  CAS  Google Scholar 

  • Vallvé SL, Rojo H, Wisnivesky-Colli C (1996) Urban ecology of Triatoma infestans in San Juan, Argentina. Mem Inst Oswaldo Cruz 91:405–408

    Article  PubMed  Google Scholar 

  • Vazquez-Prokopec GM, Ceballos LA, Cecere MC et al (2002) Seasonal variations of microclimatic conditions in domestic and peridomestic habitats of Triatoma infestans (Hemiptera: Reduviidae) in rural Northwest Argentina. Acta Trop 84:229–238

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Prokopec GM, Ceballos LA, Marcet PL et al (2006) Seasonal variations in active dispersal of natural populations of Triatoma infestans in rural North-Western Argentina. Med Vet Entomol 20:273–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventura-Garcia L, Roura M, Pell C et al (2013) Socio-cultural aspects of Chagas disease: a systematic review of qualitative research. PLoS Negl Trop Dis 7:e2410

    Article  PubMed  PubMed Central  Google Scholar 

  • Viotti R, Vigliano CA, Álvarez MG et al (2009) El impacto de las condiciones socioeconómicas en la evolución de la enfermedad de Chagas crónica. Rev Española Cardiol 62:1224–1232

    Article  Google Scholar 

  • Waleckx E, Suarez J, Richards B et al (2014) Triatoma sanguisuga blood meals and potential for Chagas disease, Louisiana, USA. Emerg Infect Dis 20:2141–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waleckx E, Gourbière S, Dumonteil E (2015a) Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease. Mem Inst Oswaldo Cruz 110:324–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waleckx E, Camara-Mejia J, Ramirez-Sierra MJ et al (2015b) An innovative ecohealth intervention for Chagas disease vector control in Yucatan, Mexico. Trans R Soc Trop Med Hyg 109:143–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Walter A, Lozano-Kasten F, Bosseno MF et al (2007) Peridomicilary habitat and risk factors for Triatoma infestation in a rural community of the Mexican occident. Am J Trop Med Hyg 76:508–515

    Article  PubMed  Google Scholar 

  • Ward JP, Baker PS (1982) The tethered flight performance of a laboratory population of Triatoma infestans (Klug) (Hemiptera: Reduviidae). Bull Entomol Res 72:17–28

    Article  Google Scholar 

  • Wiegand T, Moloney KA (2014) Handbook of spatial point-pattern analysis in ecology. CRC Press, Boca Raton

    Google Scholar 

  • WisniveskyColli C, Gürtler RE, Solarz ND et al (1985) Epidemiological role of humans, dogs and cats in the transmission of Trypanosoma cruzi in a central area of Argentina. Rev Inst Med Trop São Paulo 27:346352

    Google Scholar 

  • Wisnivesky-Colli C (1987) Feeding patterns of Triatominae in relation to transmission of American trypanosomiasis. In: Brenner RR, Stoka AM (eds) Chagas disease vectors, vol 1. CRC Press, Boca Raton, pp 99–117

    Google Scholar 

  • Woolhouse ME, Dye C, Etard JF et al (1997) Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci USA 94:338–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2002) Control of Chagas disease. Second report of the WHO expert committee. WHO technical report series 905. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (2008) WHO position statement on integrated vector management. Wkly Epidemiol Rec 20:177–181

    Google Scholar 

  • World Health Organization (2015) Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly Epidemiol Rec 90:33–44

    Google Scholar 

  • Yeo M, Acosta N, Llewellyn MS et al (2005) Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. Int J Parasitol 35:225–233

    Article  CAS  PubMed  Google Scholar 

  • Zacharias CA, Pontes GB, Lorenzo MG et al (2010) Flight initiation by male Rhodnius prolixus is promoted by female odors. J Chem Ecol 36:449–451

    Article  CAS  PubMed  Google Scholar 

  • Zeledón R, Vargas LG (1984) The role of dirt floors and of firewood in rural dwellings in the epidemiology of Chagas’ disease in Costa Rica. Am J Trop Med Hyg 33:232–235

    Article  PubMed  Google Scholar 

  • Zeledón R, Solano G, Burstin L et al (1975) Epidemiological pattern of Chagas’ disease in an endemic area of Costa Rica. Am J Trop Med Hyg 24:214–225

    Article  PubMed  Google Scholar 

  • Zeledón R, Alvarado R, Jirón LF (1977) Observations on the feeding and defecation patterns of three triatomine species (Hemiptera: Reduviidae). Acta Trop 34:65–77

    PubMed  Google Scholar 

  • Zeledón R, Beard CB, Dias JP et al (2012) An appraisal of the status of Chagas disease in the United States. Elsevier, Oxford

    Google Scholar 

  • Zingales B (2018) Trypanosoma cruzi genetic diversity: something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop 184:38–52

    Article  CAS  PubMed  Google Scholar 

  • Zingales B, Miles MA, Campbell DA et al (2012) The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 12:240–253

    Article  PubMed  Google Scholar 

  • zu Dohna H, Cecere MC, Gürtler RE et al (2009) Spatial re-establishment dynamics of local populations of vectors of Chagas disease. PLoS Negl Trop Dis e490:3

    Google Scholar 

Download references

Acknowledgments

We are grateful to Carla Cecere, Sol Gaspe, Gustavo Enriquez, Yael Provecho, Paula Sartor, and Natalia Macchiaverna for helpful discussions. This work was supported by the University of Buenos Aires (UBACYT 20020130100843BA), PICT 2014-2661 and PICT 2015-2921.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo E. Gürtler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gürtler, R.E., del Pilar Fernández, M., Cardinal, M.V. (2021). Eco-Epidemiology of Vector-Borne Transmission of Trypanosoma cruzi in Domestic Habitats. In: Guarneri, A., Lorenzo, M. (eds) Triatominae - The Biology of Chagas Disease Vectors . Entomology in Focus, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-64548-9_17

Download citation

Publish with us

Policies and ethics