Skip to main content

Self-supervised Denoising via Diffeomorphic Template Estimation: Application to Optical Coherence Tomography

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12069))

Abstract

Optical Coherence Tomography (OCT) is pervasive in both the research and clinical practice of Ophthalmology. However, OCT images are strongly corrupted by noise, limiting their interpretation. Current OCT denoisers leverage assumptions on noise distributions or generate targets for training deep supervised denoisers via averaging of repeat acquisitions. However, recent self-supervised advances allow the training of deep denoising networks using only repeat acquisitions without clean targets as ground truth, reducing the burden of supervised learning. Despite the clear advantages of self-supervised methods, their use is precluded as OCT shows strong structural deformations even between sequential scans of the same subject due to involuntary eye motion. Further, direct nonlinear alignment of repeats induces correlation of the noise between images. In this paper, we propose a joint diffeomorphic template estimation and denoising framework which enables the use of self-supervised denoising for motion deformed repeat acquisitions, without empirically registering their noise realizations. Strong qualitative and quantitative improvements are achieved in denoising OCT images, with generic utility in any imaging modality amenable to multiple exposures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.cs.tut.fi/~foi/GCF-BM3D/.

  2. 2.

    http://stnava.github.io/ANTs/.

  3. 3.

    https://github.com/NVlabs/noise2noise.

  4. 4.

    For [18], Algorithm 1 in the paper suggests that lower is better. However, their code negates the final correlation value, thus making higher better. We do the same to maintain consistency with their convention.

References

  1. Avants, B., Gee, J.C.: Geodesic estimation for large deformation anatomical shape averaging and interpolation. Neuroimage 23, S139–S150 (2004)

    Article  Google Scholar 

  2. Avants, B.B., et al.: The optimal template effect in hippocampus studies of diseased populations. Neuroimage 49(3), 2457–2466 (2010)

    Article  Google Scholar 

  3. Bashkirova, D., Usman, B., Saenko, K.: Adversarial self-defense for cycle-consistent GANs. In: Advances in Neural Information Processing Systems, pp. 637–647 (2019)

    Google Scholar 

  4. Batson, J., Royer, L.: Noise2self: blind denoising by self-supervision. In: International Conference on Machine Learning, pp. 524–533 (2019)

    Google Scholar 

  5. Broaddus, C., Krull, A., Weigert, M., Schmidt, U., Myers, G.: Removing structured noise with self-supervised blind-spot networks. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 159–163. IEEE (2020)

    Google Scholar 

  6. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  7. Buchholz, T.O., Jordan, M., Pigino, G., Jug, F.: Cryo-CARE: content-aware image restoration for cryo-transmission electron microscopy data. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 502–506. IEEE (2019)

    Google Scholar 

  8. Chu, C., Zhmoginov, A., Sandler, M.: Cyclegan, a master of steganography. arXiv preprint arXiv:1712.02950 (2017)

  9. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  10. Devalla, S.K., et al.: A deep learning approach to denoise optical coherence tomography images of the optic nerve head. Sci. Rep. 9(1), 1–13 (2019)

    Article  Google Scholar 

  11. Dey, N., Messinger, J., Smith, R.T., Curcio, C.A., Gerig, G.: Robust non-negative tensor factorization, diffeomorphic motion correction, and functional statistics to understand fixation in fluorescence microscopy. In: Shen, D., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Lecture Notes in Computer Science, vol. 11764, pp. 658–666. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_73

    Chapter  Google Scholar 

  12. Gisbert, G., Dey, N., Ishikawa, H., Schuman, J., Fishbaugh, J., Gerig, G.: Improved denoising of optical coherence tomography via repeated acquisitions and unsupervised deep learning. Invest. Ophthalmol. Vis. Sci. 61(9), PB0035 (2020)

    Google Scholar 

  13. Halupka, K.J., et al.: Retinal optical coherence tomography image enhancement via deep learning. Biomed. Opt. Exp. 9(12), 6205–6221 (2018)

    Article  Google Scholar 

  14. Hendriksen, A.A., Pelt, D.M., Batenburg, K.J.: Noise2inverse: self-supervised deep convolutional denoising for linear inverse problems in imaging. arXiv preprint arXiv:2001.11801 (2020)

  15. Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23, S151–S160 (2004)

    Article  Google Scholar 

  16. Kafieh, R., Rabbani, H., Selesnick, I.: Three dimensional data-driven multi scale atomic representation of optical coherence tomography. IEEE Trans. Med. Imaging 34(5), 1042–1062 (2014)

    Article  Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Kong, X., Li, K., Yang, Q., Wenyin, L., Yang, M.H.: A new image quality metric for image auto-denoising. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2888–2895 (2013)

    Google Scholar 

  19. Krull, A., Buchholz, T.O., Jug, F.: Noise2void-learning denoising from single noisy images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2129–2137 (2019)

    Google Scholar 

  20. Laine, S., Karras, T., Lehtinen, J., Aila, T.: High-quality self-supervised deep image denoising. In: Advances in Neural Information Processing Systems, pp. 6970–6980 (2019)

    Google Scholar 

  21. Lehtinen, J., et al.: Noise2Noise: learning image restoration without clean data. In: ICML, pp. 2971–2980 (2018)

    Google Scholar 

  22. Maggioni, M., Katkovnik, V., Egiazarian, K., Foi, A.: Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 22(1), 119–133 (2012)

    Article  MathSciNet  Google Scholar 

  23. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  24. Qiu, B., et al.: Noise reduction in optical coherence tomography images using a deep neural network with perceptually-sensitive loss function. Biomed. Opt. Exp. 11(2), 817–830 (2020)

    Article  Google Scholar 

  25. Ravier, M., et al.: Analysis of morphological changes of lamina cribrosa under acute intraocular pressure change. In: Frangi, A., Schnabel, J., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) Medical Image Computing and Computer Assisted Intervention – ICCAI 2018. Lecture Notes in Computer Science, vol. 11071, pp. 364–371. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_41

    Chapter  Google Scholar 

  26. Romo-Bucheli, D., et al.: Reducing image variability across OCT devices with unsupervised unpaired learning for improved segmentation of retina. Biomed. Opt. Exp. 11(1), 346–363 (2020)

    Article  Google Scholar 

  27. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) International Conference on Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Lecture Notes in Computer Science, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  28. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  29. Zhang, Y., et al.: A poisson-gaussian denoising dataset with real fluorescence microscopy images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11710–11718 (2019)

    Google Scholar 

  30. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  31. Zhu, X., Milanfar, P.: Automatic parameter selection for denoising algorithms using a no-reference measure of image content. IEEE Trans. Image Process. 19(12), 3116–3132 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants 1R01EY027948-01 and 2R01EY013178-15. HPC resources used for this research provided by grant NSF MRI-1229185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neel Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gisbert, G., Dey, N., Ishikawa, H., Schuman, J., Fishbaugh, J., Gerig, G. (2020). Self-supervised Denoising via Diffeomorphic Template Estimation: Application to Optical Coherence Tomography. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2020. Lecture Notes in Computer Science(), vol 12069. Springer, Cham. https://doi.org/10.1007/978-3-030-63419-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63419-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63418-6

  • Online ISBN: 978-3-030-63419-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics