Skip to main content

A Machine Consciousness Architecture Based on Deep Learning and Gaussian Processes

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12344))

Included in the following conference series:

Abstract

Recent developments in machine learning have pushed the tasks that machines can do outside the boundaries of what was thought to be possible years ago. Methodologies such as deep learning or generative models have achieved complex tasks such as generating art pictures or literature automatically. Machine Consciousness is a field that has been deeply studied and several theories based in the functionalism philosophical theory like the global workspace theory have been proposed. In this work, we propose an architecture that may arise consciousness in a machine based in the global workspace theory and in the assumption that consciousness appear in machines that have cognitive processes and exhibit conscious behaviour. This architecture is based in processes that use the recent Deep Learning and generative process models. For every module of this architecture, we provide detailed explanations of the models involved and how they communicate with each other to create the cognitive architecture. We illustrate how we can optimize the architecture to generate social interactions between robots and genuine pieces of art, both features correlated with machine consciousness. As far as we know, this is the first machine consciousness architecture that use generative models and deep learning to exhibit conscious social behaviour and to retrieve pictures and other subjective content made by robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleksander, I.: Impossible Minds: My Neurons, My Consciousness. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  2. Aleksander, I.: Why axiomatic models of being conscious? J. Conscious. Stud. 14(7), 15–27 (2007)

    Google Scholar 

  3. Aleksander, I., Dunmall, B.: Axioms and tests for the presence of minimal consciousness in agents i: preamble. J. Conscious. Stud. 10(4–5), 7–18 (2003)

    Google Scholar 

  4. Arrabales, R., Ledezma, A., Sanchis, A.: Consscale: a pragmatic scale for measuring the level of consciousness in artificial agents. J. Conscious. Stud. 17(3–4), 131–164 (2010)

    Google Scholar 

  5. Baars, B.J.: In the theatre of consciousness. global workspace theory, a rigorous scientific theory of consciousness. J. Conscious. Stud. 4(4), 292–309 (1997)

    Google Scholar 

  6. Baars, B.J.: The global workspace theory of consciousness. Blackwell Companion Conscious. 236–246 (2007)

    Google Scholar 

  7. Baars, B.J., Newman, J.: A neurobiological interpretation of global workspace theory. Conscious. Philos. Cogn. Neurosci. 211–226 (1994)

    Google Scholar 

  8. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  9. Balduzzi, D., Tononi, G.: Integrated information in discrete dynamical systems: motivation and theoretical framework. PLoS Comput. Biol. 4, 6 (2008)

    Article  Google Scholar 

  10. Bengio, Y.: The consciousness prior. arXiv preprint arXiv:1709.08568 (2017)

  11. Cambria, E.: Affective computing and sentiment analysis. IEEE Intell. Syst. 31(2), 102–107 (2016)

    Article  Google Scholar 

  12. Chella, A., Frixione, M., Gaglio, S.: A cognitive architecture for robot self-consciousness. Artif. Intell. Med. 44(2), 147–154 (2008)

    Article  Google Scholar 

  13. Chella, A., Manzotti, R.: Artificial intelligence and consciousness. In: Association for the Advancement of Artificial Intelligence Fall Symposium, pp. 1–8 (2007)

    Google Scholar 

  14. Chella, A., Manzotti, R.: Artificial consciousness. In: Perception-Action Cycle. Springer, pp. 637–671 (2011)

    Google Scholar 

  15. Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. Am. Stat. 49(4), 327–335 (1995)

    Google Scholar 

  16. Crick, F., Clark, J.: The astonishing hypothesis. J. Conscious. Stud. 1(1), 10–16 (1994)

    Google Scholar 

  17. Damasio, A., Dolan, R.J.: The feeling of what happens. Nature 401(6756), 847–847 (1999)

    Article  Google Scholar 

  18. Dehaene, S., Changeux, J.-P.: Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness. PLoS Biol. 3, 5 (2005)

    Article  Google Scholar 

  19. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp. 248–255 (2009)

    Google Scholar 

  20. Deng, L., Liu, Y.: Deep Learning in Natural Language Processing. Springer, Berlin (2018)

    Book  Google Scholar 

  21. Elgammal, A., Liu, B., Elhoseiny, M., Mazzone, M.: Can: creative adversarial networks, generating” art” by learning about styles and deviating from style norms. arXiv preprint arXiv:1706.07068 (2017)

  22. Fellbaum, C.: Wordnet. Encycl. Appl. Linguist. (2012)

    Google Scholar 

  23. Gamez, D.: The development and analysis of conscious machines. PhD thesis, University of Essex Colchester (2008)

    Google Scholar 

  24. Gamez, D.: Progress in machine consciousness. Conscious. Cogn. 17(3), 887–910 (2008)

    Article  Google Scholar 

  25. Gamez, D.: Human and Machine Consciousness. Open Book Publishers, United Kingdom (2018)

    Book  Google Scholar 

  26. Garrido-Merchán, E.C., Albarca-Molina, A.: Suggesting cooking recipes through simulation and bayesian optimization. In: Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A.J. (eds.) IDEAL 2018. LNCS, vol. 11314, pp. 277–284. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03493-1_30

    Chapter  Google Scholar 

  27. Garrido-Merchán, E.C., Hernández-Lobato, D.: Predictive entropy search for multi-objective bayesian optimization with constraints. Neurocomputing 361, 50–68 (2019)

    Article  Google Scholar 

  28. Garrido-MerchÁn, E.C., Puente, C., Palacios, R.: Fake news detection by means of uncertainty weighted causal graphs (2020)

    Google Scholar 

  29. Garrido-MerchÁn, E.C., Puente, C., Sobrino, A., Olivas, J.A.: Uncertainty weighted causal graphs (2020)

    Google Scholar 

  30. Goertzel, B., Pennachin, C.: Artificial General Intelligence, vol. 2. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  31. González, J., Dai, Z., Hennig, P., Lawrence, N.: Batch bayesian optimization via local penalization. In: Artificial intelligence and statistics, pp. 648–657 (2016)

    Google Scholar 

  32. Graziano, M.S.: The attention schema theory: a foundation for engineering artificial consciousness. Front. Robot. AI 4, 60 (2017)

    Article  Google Scholar 

  33. Harnad, S.: Can a machine be conscious? how? J. Conscious. Stud. 10(4–5), 69–75 (2003)

    Google Scholar 

  34. He, B.J., Raichle, M.E.: The FMRI signal, slow cortical potential and consciousness. Trends Cogn. Sci. 13(7), 302–309 (2009)

    Article  Google Scholar 

  35. Kaiser, L., et al.: One model to learn them all. arXiv preprint arXiv:1706.05137 (2017)

  36. Kamitani, Y., Tong, F.: Decoding the visual and subjective contents of the human brain. Nat. Neurosci. 8(5), 679–685 (2005)

    Article  Google Scholar 

  37. Kitamura, T., Tahara, T., Asami, K.-I.: How can a robot have consciousness? Adv. Robot. 14(4), 263–275 (2000)

    Article  Google Scholar 

  38. Koch, C., Tsuchiya, N.: Attention and consciousness: two distinct brain processes. Trends Cogn. Sci. 11(1), 16–22 (2007)

    Article  Google Scholar 

  39. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  40. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  41. Loar, B.: Phenomenal states. Philos. Perspect. 4, 81–108 (1990)

    Article  Google Scholar 

  42. Martínez Sastre, R., et al.: Simulating music from the latent space of a variational autoencoder. B.S. thesis, UAM (2019)

    Google Scholar 

  43. Moor, J.H.: Testing robots for qualia. In: Perspectives on Mind. Springer, pp. 107–118 (1988)

    Google Scholar 

  44. Mordvintsev, A., Olah, C., Tyka, M.: Inceptionism: going deeper into neural networks. Google Research Blog (2015)

    Google Scholar 

  45. Murphy, K.P.: Machine learning: a probabilistic perspective. MIT press (2012)

    Google Scholar 

  46. Pennartz, C., Farisco, M., Evers, K.: Indicators and criteria of consciousness in animals and intelligent machines: an inside-out approach. Front. Syst. Neurosci. 13, 25 (2019)

    Article  Google Scholar 

  47. Perlis, D.: Consciousness as self-function. J. Conscious. Stud. 4(5–6), 509–525 (1997)

    Google Scholar 

  48. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  49. Raoult, A., Yampolskiy, R.: Reviewing tests for machine consciousness. Retrieved from ResearchGate (2015)

    Google Scholar 

  50. Reggia, J.A.: The rise of machine consciousness: studying consciousness with computational models. Neural Netw. 44, 112–131 (2013)

    Article  Google Scholar 

  51. Roberts, G.O., Gelman, A., Gilks, W.R., et al.: Weak convergence and optimal scaling of random walk metropolis algorithms. Ann. Appl. Probab. 7(1), 110–120 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  52. Rose, D.: Consciousness: Philosophical, Psychological, and Neural Theories. Oxford University Press, Oxford (2006)

    Google Scholar 

  53. Searle, J.R.: Mind: A Brief Introduction. Oxford University Press, Oxford (2004)

    Google Scholar 

  54. Searle, J.R., et al.: Consciousness and Language. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  55. Shanahan, M.: Consciousness, emotion, and imagination: a brain-inspired architecture for cognitive robotics. In: In Proceedings of the AISB’05 Workshop: Next Generation Approaches to Machine Consciousness, Citeseer (2005)

    Google Scholar 

  56. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, pp. 4077–4087 (2017)

    Google Scholar 

  57. Solak, E., Murray-Smith, R., Leithead, W.E., Leith, D.J., Rasmussen, C.E.: Derivative observations in gaussian process models of dynamic systems. In: Advances in Neural Information Processing Systems, pp. 1057–1064 (2003)

    Google Scholar 

  58. Sowa, J.F.: Semantic networks. Citeseer (1987)

    Google Scholar 

  59. Stuart, S.A.: Machine consciousness: cognitive and kinaesthetic imagination. J. Conscious. Stud. 14(7), 141–153 (2007)

    Google Scholar 

  60. Thrun, S., Pratt, L.: Learning to Learn. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  61. Voß, S., Martello, S., Osman, I.H., Roucairol, C.: Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimization. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  62. Williams, C.K., Rasmussen, C.E.: Gaussian Orocesses for Machine Learning, vol. 2. MIT Press Cambridge, MA (2006)

    Google Scholar 

  63. Wu, Z., Shen, C., Van Den Hengel, A.: Wider or deeper: revisiting the resnet model for visual recognition. Pattern Recogn. 90, 119–133 (2019)

    Article  Google Scholar 

  64. Xie, Q., Hovy, E., Luong, M.-T., Le, Q.V.: Self-training with noisy student improves imagenet classification. arXiv preprint arXiv:1911.04252 (2019)

  65. Xiong, W., Luo, W., Ma, L., Liu, W., Luo, J.: Learning to generate time-lapse videos using multi-stage dynamic generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2364–2373 (2018)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the use of the facilities of Centro de Computación Científica (CCC) at UAM and acknowledge financial support from Spanish Plan Nacional I+D+i, grants TIN2016–76406-P and TEC2016–81900-REDT and Spanish Ministry of Science and Innovation - State Research Agency, project PID2019–106827GB-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo C. Garrido Merchán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Merchán, E.C.G., Molina, M. (2020). A Machine Consciousness Architecture Based on Deep Learning and Gaussian Processes. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61705-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61704-2

  • Online ISBN: 978-3-030-61705-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics