Skip to main content

Design and Simulation of Gait Rehabilitation Parallel Robotic System

  • Conference paper
  • First Online:
New Advances in Mechanisms, Mechanical Transmissions and Robotics (MTM&Robotics 2020)

Abstract

The aim of this paper is to present design considerations regarding a parallel robotic system for gait rehabilitation of patients who have suffered a stroke. The paper focuses on how the design of the robot meets anthropometric and motion amplitude requirements. The robotic system is analyzed using commercially available software, thus proving the workability in medical gait recovery. CAD based simulations are made to show the performance of the robot, using as inputs data Optitrack Motion Capture tracking. A set of testing protocols for the robotic system are described in order to clearly show the operation features of the robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amanda, G.T., Dominique, A.C., Tharshanah, T., Howard, G., Howard, J.V., Rothwell, P.M., Donnan, G.A.: Global stroke statistics. Int. J. Stroke 12(1), 13–32 (2017). https://doi.org/10.1177/1747493016676285

    Article  Google Scholar 

  2. Silver, B.: Advances in stroke over the past decade. R. I. Med. J. 2014(97), 27–30 (2013)

    Google Scholar 

  3. Erol, D., Sarkar, N.: Intelligent control for robotic rehabilitation after stroke. J. Intell. Robot. Syst. 50, 341–360 (2007). https://doi.org/10.1007/s10846-007-9169-2

    Article  MATH  Google Scholar 

  4. Abdullah, H.A., Tarry, C., Lambert, C., et al.: Results of clinicians using a therapeutic robotic system in an inpatient stroke rehabilitation unit. J. NeuroEng. Rehabil. 8, 50 (2011). https://doi.org/10.1186/1743-0003-8-50

    Article  Google Scholar 

  5. Nedezki, C.M., Julean, D., Kerekes, G.: Study of the workspace for parallel manipulator 3RUU. In: Annals of DAAAM for 2009 & Proceedings of 20th DAAAM International Symposium, vol. 20, no. 1, pp. 1445–1446 (2009). ISBN 978-3-901509-70-4, ISSN 1726-9679

    Google Scholar 

  6. Nedezki, C.M.: The maximal workspace with constant orientation of the 3 DOF RPR parallel manipulator. In: 3nd International Conference Advanced Engineering in Mechanical Systems 2013, Index Copernicus Journals Master List ID 4755, Cluj-Napoca, Romania, November 2013, vol. 56, no. IV, pp. 725–728 (2013). ISSN 1221-5872

    Google Scholar 

  7. Geonea, I.D., Tarnita, D.: Design and evaluation of a new exoskeleton for gait rehabilitation. Mech. Sci. 8, 307–321 (2017). https://doi.org/10.5194/ms-8-307-2017

    Article  Google Scholar 

  8. Nadas, I.A., Pisla, D., Vaida, C., Gherman, B.G., Carbone, G.: Towards cost-oriented user-friendly robotic systems for post-stroke rehabilitation. In: Handbook of Research on Biomimetics and Biomedical Robotics, pp. 99–141 (2018)

    Google Scholar 

  9. Kawasaki, H., Cox, D., Jeon, D., Saint-Bauzel, L., Mouri, T.: Rehabilitation robotics. J. Robot. 2011, 1–3 (2011). Article ID 937875, Hindawi

    Google Scholar 

  10. Nam, K.Y., Kim, H.J., Kwon, B.S., et al.: Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. J NeuroEng. Rehabil. 14, 24 (2017). https://doi.org/10.1186/s12984-017-0232-3

    Article  Google Scholar 

  11. Yves, S., Bouri, M., Clavel, R., Yves, A., Brodard R.: A Novel verticalized reeducation device for spinal cord injuries: the WalkTrainer, from design to clinical trials. In: Abdellatif, H. (ed.) Robotics 2010 Current and Future Challenges (2010). ISBN 978–953-7619-78-7

    Google Scholar 

  12. Major, K., Carbone, G., Major, Z., Vaida, C., Pisla, D.: Predefined assessment tools in robot assisted physical therapy after stroke. Bull. Transylvania Univ. Brasov Ser. I Eng. Sci. 10(59) No. 1, pp. 47–52 (2017). In 3rd International Conference for Doctoral Students – IPC 2017

    Google Scholar 

  13. Vaida, C., Birlescu, I., Pisla, A., Carbone, G., Plitea, N., Ulinici, I., Gherman, B., Puskas, F., Tucan, P., Pisla, D.: RAISE - an innovative parallel robotic system for lower limb rehabilitation. In: Carbone, G., Ceccarelli,, M., Pisla, D. (eds.) New Trends in Medical and Service Robotics. Mechanisms and Machine Science, vol. 65, pp. 293–302. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-00329-6_33

  14. Morone, G., Paolucci, S., Cherubin, A., et al.: Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics. Neuropsychiatr. Dis. Treat. 13, 1303–1311 (2017)

    Article  Google Scholar 

  15. Cafolla, D., Russo, M., Carbone, G.: CUBE, a cable-driven device for limb rehabilitation. J. Bionic Eng. 16(3), 492–502 (2019)

    Article  Google Scholar 

  16. Gherman, B., Birlescu I., Tucan, P., Vaida, C., Pisla, A., Pisla, D.: Modelling and simulation of a robotic system for lower limb rehabilitation. In: ASME. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 5B: 42nd Mechanisms and Robotics Conference ():V05BT07A083. https://doi.org/10.1115/detc2018-85872

  17. Nadas, I.A., Gherman, B., Bîrlescu, I., Banica, A., Carbone, G., Pisla, D.: Analysis of the design and dynamic balancing of the RECOVER robotic system. In: ACME 2020, Iasi, status: pending decision

    Google Scholar 

  18. Hora, M., Soumar, L., Pontzer, H., Sládek, V.: Body size and lower limb posture during walking in humans. PLoS ONE 12(2), e0172112 (2017). https://doi.org/10.1371/journal.pone.0172112

    Article  Google Scholar 

  19. Gherman, B., Birlescu, I., Plitea, N., Carbone, G., Tarnita, D., Pisla, D.: On the Singularity-free workspace of a parallel robot for lower-limb rehabilitation. Proc. Rom. Acad. Ser. A 20, 383–391 (2019)

    MathSciNet  Google Scholar 

Download references

Acknowledgment

The paper presents results from the research activities of the project ID 37_215, MySMIS code 103415 “Innovative approaches regarding the rehabilitation and assistive robotics for healthy ageing” co-financed by the European Regional Development Fund through the Competitiveness Operational Programme 2014-2020, Priority Axis 1, Action 1.1.4, through the financing contract 20/01.09.2016, between the Technical University of Cluj-Napoca and ANCSI as Intermediary Organism in the name and for the Ministry of European Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doina Pisla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gherman, B., Nadas, I., Tucan, P., Carbone, G., Pisla, D. (2021). Design and Simulation of Gait Rehabilitation Parallel Robotic System. In: Lovasz, EC., Maniu, I., Doroftei, I., Ivanescu, M., Gruescu, CM. (eds) New Advances in Mechanisms, Mechanical Transmissions and Robotics . MTM&Robotics 2020. Mechanisms and Machine Science, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-60076-1_17

Download citation

Publish with us

Policies and ethics