Skip to main content

Pooling Regularized Graph Neural Network for fMRI Biomarker Analysis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Understanding how certain brain regions relate to a specific neurological disorder has been an important area of neuroimaging research. A promising approach to identify the salient regions is using Graph Neural Networks (GNNs), which can be used to analyze graph structured data, e.g. brain networks constructed by functional magnetic resonance imaging (fMRI). We propose an interpretable GNN framework with a novel salient region selection mechanism to determine neurological brain biomarkers associated with disorders. Specifically, we design novel regularized pooling layers that highlight salient regions of interests (ROIs) so that we can infer which ROIs are important to identify a certain disease based on the node pooling scores calculated by the pooling layers. Our proposed framework, Pooling Regularized-GNN (PR-GNN), encourages reasonable ROI-selection and provides flexibility to preserve either individual- or group-level patterns. We apply the PR-GNN framework on a Biopoint Autism Spectral Disorder (ASD) fMRI dataset. We investigate different choices of the hyperparameters and show that PR-GNN outperforms baseline methods in terms of classification accuracy. The salient ROI detection results show high correspondence with the previous neuroimaging-derived biomarkers for ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaiser, M.D., et al.: Neural signatures of autism. Proc. Natl. Acad. Sci. 107(49), 21223–21228 (2010)

    Article  Google Scholar 

  2. Goldani, A.A., Downs, S.R., Widjaja, F., Lawton, B., Hendren, R.L.: Biomarkers in autism. Front. Psychiatry 5, 100 (2014)

    Article  Google Scholar 

  3. Baker, J.T., et al.: Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry 71(2), 109–118 (2014)

    Article  Google Scholar 

  4. McDade, E., et al.: Longitudinal cognitive and biomarker changes in dominantly inherited alzheimer disease. Neurology 91(14), e1295–e1306 (2018)

    Article  Google Scholar 

  5. Worsley, K.J., et al.: A general statistical analysis for fMRI data. Neuroimage 15(1), 1–15 (2002)

    Article  Google Scholar 

  6. Poldrack, R.A., Halchenko, Y.O., Hanson, S.J.: Decoding the large-scale structure of brain function by classifying mental states across individuals. Psychol. Sci. 20(11), 1364–1372 (2009)

    Article  Google Scholar 

  7. Wang, X., et al.: Decoding and mapping task states of the human brain via deep learning. Hum. Brain Mapp. 41, 1505–1519 (2019)

    Article  Google Scholar 

  8. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

    Google Scholar 

  9. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:1409.1556

  10. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: Advances in Neural Information Processing Systems, pp. 136–144 (2016)

    Google Scholar 

  11. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)

    Google Scholar 

  12. Dhillon, I.S., Guan, Y., Kulis, B.: Weighted graph cuts without eigenvectors a multilevel approach. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1944–1957 (2007)

    Article  Google Scholar 

  13. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. In: Advances in Neural Information Processing Systems, pp. 4800–4810 (2018)

    Google Scholar 

  14. Gao, H., Ji, S.: Graph u-nets (2019). arXiv preprint arXiv:1905.05178

  15. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling (2019). arXiv preprint arXiv:1904.08082

  16. Veličković, P., et al.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  17. Yang, X., et al.: Interpretable multimodality embedding of cerebral cortex using attention graph network for identifying bipolar disorder. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 799–807. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_89

    Chapter  Google Scholar 

  18. Gong, L., Cheng, Q.: Exploiting edge features for graph neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9211–9219 (2019)

    Google Scholar 

  19. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(Mar), 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Li, C.-L., Chang, W.-C., Cheng, Y., Yang, Y., Póczos, B.: Mmd gan: towards deeper understanding of moment matching network. In: Advances in Neural Information Processing Systems, pp. 2203–2213 (2017)

    Google Scholar 

  21. Kaiser, M.D., et al.: Neural signatures of autism. PNAS 107, 21223–21228 (2010)

    Article  Google Scholar 

  22. Yang, D., et al.: Brain responses to biological motion predict treatment outcome in young children with autism. Transl. Psychiatry 6(11), e948 (2016)

    Article  Google Scholar 

  23. Desikan, R.S., et al.: An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006)

    Article  Google Scholar 

  24. Kawahara, J., et al.: Brainnetcnn: convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146, 1038–1049 (2017)

    Article  Google Scholar 

  25. Li, X., Dvornek, N.C., Zhou, Y., Zhuang, J., Ventola, P., Duncan, J.S.: Graph neural network for interpreting task-fMRI biomarkers. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 485–493. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_54

    Chapter  Google Scholar 

  26. Schuetze, M., Park, M.T.M., Cho, I.Y., MacMaster, F.P., Chakravarty, M.M., Bray, S.L.: Morphological alterations in the thalamus, striatum, and pallidum in autism spectrum disorder. Neuropsychopharmacology 41(11), 2627–2637 (2016)

    Article  Google Scholar 

  27. Hardan, A.Y., Girgis, R.R., Adams, J., Gilbert, A.R., Keshavan, M.S., Minshew, N.J.: Abnormal brain size effect on the thalamus in autism. Psychiatry Res. Neuroimaging 147(2–3), 145–151 (2006)

    Article  Google Scholar 

  28. Bhanji, J.P., Delgado, M.R.: The social brain and reward: social information processing in the human striatum. Wiley Interdisc. Rev. Cogn. Sci. 5(1), 61–73 (2014)

    Article  Google Scholar 

  29. Press, C., Weiskopf, N., Kilner, J.M.: Dissociable roles of human inferior frontal gyrus during action execution and observation. Neuroimage 60(3), 1671–1677 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by NIH grants [R01NS035193, R01MH100028].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxiao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X. et al. (2020). Pooling Regularized Graph Neural Network for fMRI Biomarker Analysis. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics