Skip to main content

Anomaly Detection for Data Streams Based on Isolation Forest Using Scikit-Multiflow

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

Detecting anomalies in streaming data is an important issue in a variety of real-word applications as it provides some critical information, e.g., Cyber security attacks, Fraud detection or others real-time applications. Different approaches have been designed in order to detect anomalies: statistics-based, isolation-based, clustering-based. In this paper, we present a quick survey of the existing anomaly detection methods for data streams. We focus on Isolation Forest (iForest), a state-of-the-art method for anomaly detection. We provide the implementation of IForestASD, a variant of iForest for data streams.

This implementation is built on top of scikit-multiflow, an open source machine learning framework for data streams. In fact, few anomalies detection methods are provided in the well-known data streams mining frameworks such as MOA or StreamDM. Hence, we extend scikit-multiflow providing an additional tool. We performed experiments on 3 real-world data sets to evaluate predictive performance and resource consumption (memory and time) of IForestASD and compare it with a well known and state-of-the-art anomaly detection algorithm for data streams called Half-Space Trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://moa.cms.waikato.ac.nz/documentation/.

  2. 2.

    https://scikit-learn.org/stable/scikit-learn.

  3. 3.

    https://scikit-multiflow.github.io/scikit-multiflow/documentation.html.

References

  1. Aggarwal, C.C.: Outlier Analysis, 2nd edn. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47578-3

    Book  MATH  Google Scholar 

  2. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: Proceedings of the 29th International Conference on Very Large Data Bases-Volume 29, pp. 81–92. VLDB Endowment (2003)

    Google Scholar 

  3. Angiulli, F., Fassetti, F.: Detecting distance-based outliers in streams of data. In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, pp. 811–820. ACM (2007)

    Google Scholar 

  4. Assent, I., Kranen, P., Baldauf, C., Seidl, T.: AnyOut: anytime outlier detection on streaming data. In: Lee, S., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012. LNCS, vol. 7238, pp. 228–242. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29038-1_18

    Chapter  Google Scholar 

  5. Behera, R.K., Das, S., Jena, M., Rath, S.K., Sahoo, B.: A comparative study of distributed tools for analyzing streaming data. In: 2017 International Conference on Information Technology (ICIT), pp. 79–84 (2017)

    Google Scholar 

  6. Bifet, A., Morales, G.D.F.: Big data stream learning with SAMOA. In: 2014 IEEE International Conference on Data Mining Workshop, pp. 1199–1202, December 2014. https://doi.org/10.1109/ICDMW.2014.24

  7. Bifet, A., Gavaldà, R., Holmes, G., Pfahringer, B.: Machine Learning for Data Streams with Practical Examples in MOA. MIT Press (2018). https://moa.cms.waikato.ac.nz/book/

  8. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis. J. Mach. Learn. Res. 11, 1601–1604 (2010). http://portal.acm.org/citation.cfm?id=1859903

    Google Scholar 

  9. Bifet, A., Maniu, S., Qian, J., Tian, G., He, C., Fan, W.: StreamDM: advanced data mining in spark streaming. In: International Conference on Data Mining Workshops (ICDMW). IEEE, November 2015. https://doi.org/10.1109/ICDMW.2015.140. https://hal.inria.fr/hal-01270606

  10. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Google Scholar 

  11. Ding, Z., Fei, M.: An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window. IFAC Proc. Vol. 46(20), 12–17 (2013). https://doi.org/10.3182/20130902-3-CN-3020.00044

    Article  Google Scholar 

  12. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  13. Gomes, H.M., et al.: Adaptive random forests for evolving data stream classification. Mach. Learn. 106(9), 1469–1495 (2017). https://doi.org/10.1007/s10994-017-5642-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier detection for temporal data: a survey. IEEE Trans. Knowl. Data Eng. 26(9), 2250–2267 (2014)

    MATH  Google Scholar 

  15. Hariri, S., Kind, M.C., Brunner, R.J.: Extended isolation forest. arXiv preprint arXiv:1811.02141 (2018)

  16. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)

    MATH  Google Scholar 

  17. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)

    Google Scholar 

  18. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 6(1), 3 (2012)

    Google Scholar 

  19. Manapragada, C., Webb, G.I., Salehi, M.: Extremely fast decision tree. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018. Association for Computing Machinery (2018). https://doi.org/10.1145/3219819.3220005

  20. Montiel, J., Read, J., Bifet, A., Abdessalem, T.: Scikit-Multiflow: a multi-output streaming framework. J. Mach. Learn. Res. 19(72), 1–5 (2018). http://jmlr.org/papers/v19/18-251.html

    MATH  Google Scholar 

  21. Pokrajac, D., Lazarevic, A., Latecki, L.J.: Incremental local outlier detection for data streams. In: 2007 IEEE Symposium on Computational Intelligence and Data Mining, pp. 504–515. IEEE (2007)

    Google Scholar 

  22. Salehi, M., Rashidi, L.: A survey on anomaly detection in evolving data: [with application to forest fire risk prediction]. ACM SIGKDD Explor. Newslett. 20(1), 13–23 (2018)

    Google Scholar 

  23. Staerman, G., Mozharovskyi, P., Clémençon, S., d’Alché Buc, F.: Functional isolation forest (2019)

    Google Scholar 

  24. Tan, S.C., Ting, K.M., Liu, F.T.: Fast anomaly detection for streaming data. In: IJCAI (2011)

    Google Scholar 

  25. Tellis, V.M., D’Souza, D.J.: Detecting anomalies in data stream using efficient techniques: a review. In: 2018 International Conference ICCPCCT. IEEE (2018)

    Google Scholar 

  26. Thakkar, P., Vala, J., Prajapati, V.: Survey on outlier detection in data stream. Int. J. Comput. Appl. 136, 13–16 (2016)

    Google Scholar 

  27. Togbe, M.U., Chabchoub, Y., Boly, A., Chiky, R.: Etude comparative des méthodes de détection d’anomalies. Revue des Nouvelles Technologies de l’Information Extraction et Gestion des Connaissances, RNTI-E-36, pp. 109–120 (2020)

    Google Scholar 

  28. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques, 4th edn. Morgan Kaufmann, Amsterdam (2017)

    Google Scholar 

  29. Yamanishi, K., Takeuchi, J.I., Williams, G., Milne, P.: On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Min. Knowl. Disc. 8(3), 275–300 (2004)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Albert BIFET from the University of Waikato and Télécom Paris for his insightful discussions about Big Data Streams mining, Adrien CHESNAUD and Zhansaya SAILAUBEKOVA for their contributions on the code, and Fabrice LE DEIT from BNP Paribas IT Group for supporting the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurras Ulbricht Togbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Togbe, M.U. et al. (2020). Anomaly Detection for Data Streams Based on Isolation Forest Using Scikit-Multiflow. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12252. Springer, Cham. https://doi.org/10.1007/978-3-030-58811-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58811-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58810-6

  • Online ISBN: 978-3-030-58811-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics