Skip to main content

Empirical Versus Analytical Solutions to Full Fuzzy Linear Programming

  • Conference paper
  • First Online:
Intelligent Methods in Computing, Communications and Control (ICCCC 2020)

Abstract

We approach the full fuzzy linear programming by grounding the definition of the optimal solution in the extension principle framework. Employing a Monte Carlo simulation, we compare an empirically derived solution to the solutions yielded by approaches proposed in the literature. We also propose a model able to numerically describe the membership function of the fuzzy set of feasible objective values. At the same time, the decreasing (increasing) side of this membership function represents the right (left) side of the membership function of the fuzzy set containing the maximal (minimal) objective values. Our aim is to provide decision-makers with relevant information on the extreme values that the objective function can reach under uncertain given constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baykasoglu, A., Subulan, K.: An analysis of fully fuzzy linear programming with fuzzy decision variables through logistics network design problem. Knowl. Based Syst. 90, 165–184 (2015). https://doi.org/10.1016/j.knosys.2015.09.020

    Article  Google Scholar 

  2. Baykasoglu, A., Subulan, K.: Constrained fuzzy arithmetic approach to fuzzy transportation problems with fuzzy decision variables. Expert Syst. Appl. 81, 193–222 (2017). https://doi.org/10.1016/j.eswa.2017.03.040

    Article  Google Scholar 

  3. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manage. Sci. 17(4), B—141–B–164 (1970). https://doi.org/10.1287/mnsc.17.4.B141

    Article  MathSciNet  Google Scholar 

  4. Bhardwaj, B., Kumar, A.: A note on ‘a new algorithm to solve fully fuzzy linear programming problems using the molp problem’. Appl. Math. Model. 39(19), 5982–5985 (2015). https://doi.org/10.1016/j.apm.2014.07.033

    Article  MathSciNet  MATH  Google Scholar 

  5. Buckley, J.J., Jowers, L.J.: Monte Carlo Methods in Fuzzy Optimization. Springer, Heidelberg (2008)

    Book  Google Scholar 

  6. Das, S.K., Mandal, T., Edalatpanah, S.A.: A mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers. Appl. Intell. 46, 509–519 (2017). https://doi.org/10.1007/s10489-016-0779-x

    Article  Google Scholar 

  7. Dubois, D.: The role of fuzzy sets in decision sciences: old techniques and new directions. Fuzzy Sets Syst. 184(1), 3–28 (2011). https://doi.org/10.1016/j.fss.2011.06.003

    Article  MathSciNet  MATH  Google Scholar 

  8. Dubois, D., Prade, H.: Fuzzy sets and systems: theory and applications. In: Mathematics in Science and Engineering (1980)

    Google Scholar 

  9. Ezzati, R., Khorram, V., Enayati, R.: A new algorithm to solve fully fuzzy linear programming problems using the molp problem. Appl. Math. Model. 39(12), 3183–3193 (2015). https://doi.org/10.1016/j.apm.2013.03.014

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghanbari, R., Ghorbani-Moghadam, K., De Baets, B.: Fuzzy linear programming problems: models and solutions. Soft Comput. (2019). https://doi.org/10.1007/s00500-019-04519-w

    Article  MATH  Google Scholar 

  11. Kumar, A., Kaur, J., Singh, P.: A new method for solving fully fuzzy linear programming problems. Appl. Math. Model. 35(2), 817–823 (2011). https://doi.org/10.1016/j.apm.2010.07.037

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, G., Kou, G., Peng, Y.: A group decision making model for integrating heterogeneous information. IEEE Trans. Syst. Man Cybern. Syst. 48(6), 982–992 (2018). https://doi.org/10.1016/j.ejor.2019.03.009

    Article  Google Scholar 

  13. Liu, S.-T.: Fractional transportation problem with fuzzy parameters. Soft Comput. 20(3), 3629–3636 (2016). https://doi.org/10.1007/s00500-015-1722-5

    Article  Google Scholar 

  14. Liu, S.-T., Kao, C.: Solving fuzzy transportation problems based on extension principle. Eur. J. Oper. Res. 153(3), 661–674 (2004). https://doi.org/10.1016/S0377-2217(02)00731-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Morente-Molinera, J.A., Kou, G., Pang, C., Cabrerizo, F.J., Herrera-Viedma, E.: An automatic procedure to create fuzzy ontologies from users’ opinions using sentiment analysis procedures and multi-granular fuzzy linguistic modelling methods. Inf. Sci. 476, 222–238 (2019). https://doi.org/10.1016/j.ins.2018.10.022

    Article  Google Scholar 

  16. Pérez-Cañedo, B., Concepción-Morales, E.R.: A method to find the unique optimal fuzzy value of fully fuzzy linear programming problems with inequality constraints having unrestricted l-r fuzzy parameters and decision variables. Expert Syst. Appl. 123, 256–269 (2019). https://doi.org/10.1016/j.eswa.2019.01.041

    Article  Google Scholar 

  17. Pérez-Cañedo, B., Concepción-Morales, E.R.: On LR-type fully intuitionistic fuzzy linear programming with inequality constraints: solutions with unique optimal values. Expert Syst. Appl. 128, 246–255 (2019). https://doi.org/10.1016/j.eswa.2019.03.035

    Article  Google Scholar 

  18. Stanojević, B., Dzitac, I., Dzitac, S.: On the ratio of fuzzy numbers - exact membership function computation and applications to decision making. Technol. Econ. Dev. Econ. 21(5), 815–832 (2015). https://doi.org/10.3846/20294913.2015.1093563

    Article  Google Scholar 

  19. Stanojević, B., Dzitac, S., Dzitac, I.: Solution approach to a special class of full fuzzy linear programming problems. Procedia Comput. Sci. 162, 260–266 (2019). https://doi.org/10.1016/j.procs.2019.11.283

    Article  Google Scholar 

  20. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  21. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning I. Inf. Control 8(3), 199–249 (1975). https://doi.org/10.1016/0020-0255(75)90036-5

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, H., Kou, G., Peng, Y.: Soft consensus cost models for group decision making and economic interpretations. Eur. J. Oper. Res. 277(3), 964–980 (2019). https://doi.org/10.1016/j.ejor.2019.03.009

    Article  MathSciNet  Google Scholar 

  23. Zimmermann, H.-J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1(1), 45–55 (1978). https://doi.org/10.1016/0165-0114(78)90031-3

    Article  MathSciNet  MATH  Google Scholar 

  24. Zimmermann, H.-J.: Applications of fuzzy set theory to mathematical programming. Inf. Sci. 36(1), 29–58 (1985). https://doi.org/10.1016/0020-0255(85)90025-8

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Serbian Ministry of Education, Science and Technological Development through Mathematical Institute of the Serbian Academy of Sciences and Arts and Faculty of Organisational Sciences of the University of Belgrade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdana Stanojević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stanojević, B., Stanojević, M. (2021). Empirical Versus Analytical Solutions to Full Fuzzy Linear Programming. In: Dzitac, I., Dzitac, S., Filip, F., Kacprzyk, J., Manolescu, MJ., Oros, H. (eds) Intelligent Methods in Computing, Communications and Control. ICCCC 2020. Advances in Intelligent Systems and Computing, vol 1243. Springer, Cham. https://doi.org/10.1007/978-3-030-53651-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53651-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53650-3

  • Online ISBN: 978-3-030-53651-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics