Skip to main content

Chemically Modified Borophene

  • Chapter
  • First Online:
2D Boron: Boraphene, Borophene, Boronene

Abstract

Two-dimensional (2D) materials have great potential in several applications such as batteries, catalysts, and electronic devices because of their unique properties, such as large surface area and novel electronic states (Butler et al. ACS Nano. 7(4):2898–926 (2013); Osada and Sasaki. Adv Mater. 24(2):210–28 (2012); Deng et al. Nat Nanotechnol. 11(3):218–30 (2016)). Among these 2D materials, boron-related materials exhibit polymorphisms (Zhang et al. Chem Soc Rev. 46(22):6746–63 (2017); Kondo. Sci Technol Adv Mater. 18(1):780–804 (2017); Jiao et al. Angew Chemie Int Ed. 55(35):10292–5 (2016)), which are unique characteristics differentiating them from 2D materials—that is, there are a wide variety of stable 2D phases owing to the ability to form multicenter bonding configurations of boron (Oganov et al. J Superhard Mater. 31(5):285–291 (2009)). Single monoatomic 2D boron (borophene) layers have been fabricated on solid surfaces with several different stable structures (Mannix et al. Nat Rev Chem. 1:0014 (2017); Xie et al. Adv Mater. 1900392:1–13 (2019)), which is consistent with theoretical predictions regarding polymorphs of borophene (Boustani. Surf Sci. 370(2–3):355–63 (1997); Penev et al. Nano Lett. 12(5):2441–5 (2012); Wu. ACS Nano. 6(8):7443–53 (2012)). Chemically modified borophene should also exhibit polymorphisms owing to these characteristics. Several stable structures are predicted for hydrogenated borophene (borophane) (Jiao et al. Angew Chemie Int Ed. 55(35):10292–5 (2016)). Chemically modified borophene can thus be regarded as a material with potential to exhibit several intriguing functionalities, physical properties, and chemical properties in a wide variety of applications. We note that a wide variety of chemically modified borophenes could also be used as building blocks from the viewpoint of large-scale material production. Indeed, combining 2D materials through layer stacking in a controlled manner has already been focused on and is reported to produce several novel functionalities including superconductivity in the form of new three-dimensional (3D) layered materials (van der Waals heterostructures) (Geim and Grigorieva. Nature. 499(7459):419–25 (2013)). In this paper, both theoretically predicted results and experimentally realized results of chemically modified borophene are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013). https://doi.org/10.1021/nn400280c

    Article  CAS  Google Scholar 

  2. M. Osada, T. Sasaki, Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24(2), 210–228 (2012). https://doi.org/10.1002/adma.201103241

    Article  CAS  Google Scholar 

  3. D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian, X. Bao, Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11(3), 218–230 (2016). https://doi.org/10.1038/nnano.2015.340

    Article  CAS  Google Scholar 

  4. Z. Zhang, E.S. Penev, B.I. Yakobson, Two-dimensional boron: Structures, properties and applications. Chem. Soc. Rev. 46(22), 6746–6763 (2017). https://doi.org/10.1039/c7cs00261k

    Article  CAS  Google Scholar 

  5. T. Kondo, Recent progress in boron nanomaterials. Sci. Technol. Adv. Mater. 18(1), 780–804 (2017). https://doi.org/10.1080/14686996.2017.1379856

    Article  Google Scholar 

  6. Y. Jiao, F. Ma, J. Bell, A. Bilic, A. Du, Two-dimensional boron hydride sheets: High stability, massless Dirac fermions, and excellent mechanical properties. Angew. Chemie – Int Ed. 55(35), 10292–10295 (2016). https://doi.org/10.1002/anie.201604369

    Article  CAS  Google Scholar 

  7. A.R. Oganov, V.L. Solozhenko, Boron: A hunt for superhard polymorphs. J. Superhard Mater. 31(5), 285–291 (2009). https://doi.org/10.3103/S1063457609050013

    Article  Google Scholar 

  8. A.J. Mannix, B. Kiraly, M.C. Hersam, N.P. Guisinger, Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1, 0014 (2017). https://doi.org/10.1038/s41570-016-0014

    Article  CAS  Google Scholar 

  9. S.Y. Xie, Y. Wang, X.B. Li, Flat boron: A new cousin of graphene. Adv. Mater. 1900392, 1–13 (2019). https://doi.org/10.1002/adma.201900392

    Article  CAS  Google Scholar 

  10. I. Boustani, New quasi-planar surfaces of bare boron. Surf. Sci. 370(2–3), 355–363 (1997). https://doi.org/10.1016/S0039-6028(96)00969-7

    Article  CAS  Google Scholar 

  11. E.S. Penev, S. Bhowmick, A. Sadrzadeh, B.I. Yakobson, Polymorphism of two-dimensional boron. Nano Lett. 12(5), 2441–2445 (2012). https://doi.org/10.1021/nl3004754

    Article  CAS  Google Scholar 

  12. X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, X.C. Zeng, Two-dimensional boron monolayer sheets. ACS Nano 6(8), 7443–7453 (2012). https://doi.org/10.1021/nn302696v

    Article  CAS  Google Scholar 

  13. A.K. Geim, I.V. Van Der Grigorieva, Waals heterostructures. Nature 499(7459), 419–425 (2013). https://doi.org/10.1038/nature12385

    Article  CAS  Google Scholar 

  14. T.A. Abtew, B.C. Shih, P. Dev, V.H. Crespi, P. Zhang, Prediction of a multicenter-bonded solid boron hydride for hydrogen storage. Phys. Rev. B - Condens. Matter Mater. Phys. 83(9), 094108 (2011). https://doi.org/10.1103/PhysRevB.83.094108

    Article  CAS  Google Scholar 

  15. T.A. Abtew, P. Zhang, Charging-assisted hydrogen release mechanism in layered boron hydride. Phys. Rev. B - Condens. Matter Mater. Phys. 84(9), 1–6 (2011). https://doi.org/10.1103/PhysRevB.84.094303

    Article  CAS  Google Scholar 

  16. Z.Z. Wang, T.Y. Lü, H.Q. Wang, Y.P. Feng, J.C. Zheng, New crystal structure prediction of fully hydrogenated borophene by first principles calculations. Sci. Rep. 7, 1–11 (2017). https://doi.org/10.1038/s41598-017-00667-x

    Article  CAS  Google Scholar 

  17. W.-L. Li, C. Romanescu, T. Jian, L.-S. Wang, Elongation of planar boron clusters by hydrogenation: Boron analogues of polyenes. J. Am. Chem. Soc. 134(32), 13228–13231 (2012). https://doi.org/10.1021/ja305744a

    Article  CAS  Google Scholar 

  18. C.H. Hu, A.R. Oganov, Q. Zhu, G.R. Qian, G. Frapper, A.O. Lyakhov, H.Y. Zhou, Pressure-induced stabilization and insulator-superconductor transition of BH. Phys. Rev. Lett. 110(16), 1–5 (2013). https://doi.org/10.1103/PhysRevLett.110.165504

    Article  CAS  Google Scholar 

  19. H. Nishino, T. Fujita, N.T. Cuong, S. Tominaka, M. Miyauchi, S. Iimura, A. Hirata, N. Umezawa, S. Okada, E. Nishibori, et al., Formation and characterization of hydrogen boride sheets derived from MgB2 by cation exchange. J. Am. Chem. Soc. 139(39), 13761–13769 (2017). https://doi.org/10.1021/jacs.7b06153

    Article  CAS  Google Scholar 

  20. G. Ozin, T. Siler, Catalyst: New materials discovery: Machine-enhanced human creativity. Chem 4(6), 1183–1189 (2018). https://doi.org/10.1016/j.chempr.2018.05.011

    Article  CAS  Google Scholar 

  21. S. Tominaka, R. Ishibiki, A. Fujino, K. Kawakami, K. Ohara, T. Masuda, I. Matsuda, H. Hosono, T. Kondo, Geometrical frustration of B-H bonds in layered hydrogen borides accessible by soft chemistry. Chem 6, 406–418 (2020). https://doi.org/10.1016/j.chempr.2019.11.006

    Article  CAS  Google Scholar 

  22. X.-M. Chen, X. Chen, Chemical syntheses of two-dimensional boron materials. Chem 6, 324–326 (2020). https://doi.org/10.1016/j.chempr.2020.01.001

    Article  CAS  Google Scholar 

  23. I. Boustani, Systematic ab initio investigation of bare boron clusters: Determination of the geometry and electronic structures of Bn (n=2–14). Phys. Rev. B 55(24), 16426–16438 (1997). https://doi.org/10.1103/PhysRevB.55.16426

    Article  CAS  Google Scholar 

  24. L.C. Xu, A. Du, L. Kou, Hydrogenated borophene as a stable two-dimensional Dirac material with an ultrahigh fermi velocity. Phys. Chem. Chem. Phys. 18(39), 27284–27289 (2016). https://doi.org/10.1039/c6cp05405f

    Article  CAS  Google Scholar 

  25. J.E. Padilha, R.H. Miwa, A. Fazzio, Directional dependence of the electronic and transport properties of 2D borophene and borophane. Phys. Chem. Chem. Phys. 18(36), 25491–25496 (2016). https://doi.org/10.1039/C6CP05092A

    Article  CAS  Google Scholar 

  26. L. Kou, Y. Ma, C. Tang, Z. Sun, A. Du, C. Chen, Auxetic and ferroelastic borophane: A novel 2D material with negative possion’s ratio and switchable Dirac transport channels. Nano Lett. 16(12), acs.nanolett.6b04180 (2016). https://doi.org/10.1021/acs.nanolett.6b04180

    Article  CAS  Google Scholar 

  27. Z. Wang, T.-Y. Lü, H.-Q. Wang, Y.P. Feng, J.-C. Zheng, High anisotropy of fully hydrogenated borophene. Phys. Chem. Chem. Phys. 18(46), 31424–31430 (2016). https://doi.org/10.1039/c6cp06164h

    Article  CAS  Google Scholar 

  28. G. Liu, H.H. Wang, Y. Gao, J. Zhou, H.H. Wang, Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations. Phys. Chem. Chem. Phys. 19(4), 2843–2849 (2016). https://doi.org/10.1039/C6CP07367K

    Article  Google Scholar 

  29. M. Nakhaee, S.A. Ketabi, F.M. Peeters, Tight-binding model for borophene and borophane. Phys. Rev. B 97(12), 125424 (2018). https://doi.org/10.1103/PhysRevB.97.125424

    Article  CAS  Google Scholar 

  30. H. Nishino, T. Fujita, A. Yamamoto, T. Fujimori, A. Fujino, S.I. Ito, J. Nakamura, H. Hosono, T. Kondo, Formation mechanism of boron-based nanosheet through the reaction of MgB2 with water. J. Phys. Chem. C 121(19), 10587–10593 (2017). https://doi.org/10.1021/acs.jpcc.7b02348

    Article  CAS  Google Scholar 

  31. K.B. Garg, T. Chatterji, S. Dalela, M. Heinonnen, J. Leiro, B. Dalela, R.K. Singhal, Core level photoemission study of polycrystalline MgB2. Solid State Commun. 131(5), 343–347 (2004). https://doi.org/10.1016/j.ssc.2004.01.006

    Article  CAS  Google Scholar 

  32. A. Talapatra, S.K.K. Bandyopadhyay, P. Sen, P. Barat, S. Mukherjee, M. Mukherjee, A. Talapatra, S.K.K. Bandyopadhyay, P. Sen, P. Barat, et al., X-ray photoelectron spectroscopy studies of MgB2 for valence state of Mg. Phys. C-Superconduct. Appl. 419(3–4), 141–147 (2005). https://doi.org/10.1016/j.physc.2005.01.001

    Article  CAS  Google Scholar 

  33. E.Z. Kurmaev, I.I. Lyakhovskaya, J. Kortus, A. Moewes, N. Miyata, M. Demeter, M. Neumann, M. Yanagihara, M. Watanabe, T. Muranaka, et al., Electronic structure of MgB2 : X-ray emission and absorption studies. Phys. Rev. B 65(13) (2002). https://doi.org/10.1103/PhysRevB.65.134509

  34. L. Shao, X. Duan, Y. Li, Q. Yuan, B. Gao, H. Ye, P. Ding, A theoretical study of several fully hydrogenated borophenes. Phys. Chem. Chem. Phys. 21(14), 7630–7634 (2019). https://doi.org/10.1039/c9cp00468h

    Article  CAS  Google Scholar 

  35. S. Izadi Vishkayi, M. Bagheri Tagani, Current-voltage characteristics of borophene and borophane sheets. Phys. Chem. Chem. Phys. 19(32), 21461–21466 (2017). https://doi.org/10.1039/c7cp03873a

    Article  CAS  Google Scholar 

  36. P. Zhang, X.D. Li, C.H. Hu, S.Q. Wu, Z.Z. Zhu, First-principles studies of the hydrogenation effects in silicene sheets. Phys. Lett. Sect. A Gen. At. Solid State Phys. 376(14), 1230–1233 (2012). https://doi.org/10.1016/j.physleta.2012.02.030

    Article  CAS  Google Scholar 

  37. J.O. Sofo, A.S. Chaudhari, G.D. Barber, Graphane: A two-dimensional hydrocarbon. Phys. Rev. B - Condens. Matter Mater. Phys. 75(15), 1–4 (2007). https://doi.org/10.1103/PhysRevB.75.153401

    Article  CAS  Google Scholar 

  38. I. Tateishi, N.T. Cuong, C.A.S. Moura, M. Cameau, R. Ishibiki, A. Fujino, S. Okada, A. Yamamoto, M. Araki, S. Ito, et al., Semimetallicity of free-standing hydrogenated monolayer boron from MgB2. Phys. Rev. Mater. 3(2), 1–8 (2019). https://doi.org/10.1103/PhysRevMaterials.3.024004

    Article  Google Scholar 

  39. A. Fujino, S. Ito, T. Goto, R. Ishibiki, J.N. Kondo, T. Fujitani, J. Nakamura, H. Hosono, T. Kondo, Hydrogenated borophene shows catalytic activity as solid acid. ACS Omega 4(9), 14100–14104 (2019). https://doi.org/10.1021/acsomega.9b02020

    Article  CAS  Google Scholar 

  40. N.K. Jena, R.B. Araujo, V. Shukla, R. Ahuja, Borophane as a benchmate of graphene: A potential 2D material for anode of Li and Na-ion batteries. ACS Appl. Mater. Interfaces 9(19), 16148–16158 (2017). https://doi.org/10.1021/acsami.7b01421

    Article  CAS  Google Scholar 

  41. V. Nagarajan, R. Chandiramouli, Sensing properties of monolayer borophane nanosheet towards alcohol vapors: A first-principles study. J. Mol. Graph. Model. 73, 208–216 (2017). https://doi.org/10.1016/j.jmgm.2017.02.003

    Article  CAS  Google Scholar 

  42. Y. Singh, S. Back, Y. Jung, Computational exploration of borophane-supported single transition metal atoms as potential oxygen reduction and evolution electrocatalysts. Phys. Chem. Chem. Phys. 20(32), 21095–21104 (2018). https://doi.org/10.1039/c8cp03130d

    Article  CAS  Google Scholar 

  43. J. He, D. Li, Y. Ying, C. Feng, J. He, C. Zhong, H. Zhou, P. Zhou, G. Zhang, Orbitally driven giant thermal conductance associated with abnormal strain dependence in hydrogenated graphene-like borophene. NPJ Comput. Mater. 5(1), 1–8 (2019). https://doi.org/10.1038/s41524-019-0183-2

    Article  CAS  Google Scholar 

  44. L. Chen, X. Chen, C. Duan, Y. Huang, Q. Zhang, B. Xiao, Reversible hydrogen storage in pristine and Li decorated 2D boron hydride. Phys. Chem. Chem. Phys. 20(48), 30304–30311 (2018). https://doi.org/10.1039/C8CP05846F

    Article  CAS  Google Scholar 

  45. V. Shukla, R.B. Araujo, N.K. Jena, R. Ahuja, Borophene’s tryst with stability: Exploring 2D hydrogen boride as an electrode for rechargeable batteries. Phys. Chem. Chem. Phys. 20(34), 22008–22016 (2018). https://doi.org/10.1039/c8cp03686a

    Article  CAS  Google Scholar 

  46. P. Xiang, X. Chen, B. Xiao, Z.M. Wang, Highly flexible hydrogen boride monolayers as potassium-ion battery anodes for wearable electronics. ACS Appl. Mater. Interfaces 11(8), 8115–8125 (2019). https://doi.org/10.1021/acsami.8b22214

    Article  CAS  Google Scholar 

  47. B. Lei, Y.Y. Zhang, S.X. Du, Band engineering of B2H2 nanoribbons. Chinese Phys. B 28(4) (2019). https://doi.org/10.1088/1674-1056/28/4/046803

  48. B. Mortazavi, M. Makaremi, M. Shahrokhi, M. Raeisi, C.V. Singh, T. Rabczuk, L.F.C. Pereira, Borophene hydride: A stiff 2D material with high thermal conductivity and attractive optical and electronic properties. Nanoscale 10, 3759–3768 (2018). https://doi.org/10.1039/c7nr08725j

    Article  CAS  Google Scholar 

  49. Y. An, Y. Hou, H. Wang, J. Li, R. Wu, T. Wang, H. Da, J. Jiao, Unveiling the electric-current-limiting and photodetection effect in two-dimensional hydrogenated borophene. Phys. Rev. Appl. 11(6), 1 (2019). https://doi.org/10.1103/PhysRevApplied.11.064031

    Article  Google Scholar 

  50. R. Kawamura, N.T. Cuong, T. Fujita, R. Ishibiki, T. Hirabayashi, A. Yamaguchi, I. Matsuda, S. Okada, T. Kondo, M. Miyauchi, Photoinduced hydrogen release from hydrogen boride sheets. Nat. Commun. 10, 4880 (2019). https://doi.org/10.1038/s41467-019-12903-1

    Article  CAS  Google Scholar 

  51. E. Moran, Boron Nitride: Properties, Synthesis and Applications (Chemistry Research Application) (Nova Science Pub Inc, 2017)

    Google Scholar 

  52. Y.(.I.). Chen, Nanotubes and Nanosheets: Functionalization and Applications of Boron Nitride and Other Nanomaterials (CRC Press, 2015)

    Google Scholar 

  53. K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, Two dimensional hexagonal boron nitride (2D-HBN): Synthesis, properties and applications. J. Mater. Chem. C 5(46), 11992–12022 (2017). https://doi.org/10.1039/c7tc04300g

    Article  CAS  Google Scholar 

  54. H. Wang, Y. Zhao, Y. Xie, X. Ma, X. Zhang, Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond. 38, 031003 (2017)

    Article  Google Scholar 

  55. E.A. Smith, Graphite and boron nitride (“white graphite”): Aspects of structure, powder size, powder shape, and purity. Powder Metall. 14, 110–123 (1971)

    Article  Google Scholar 

  56. A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, C. Oshima, Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces. Phys. Rev. Lett. 75(21), 3918–3921 (1995). https://doi.org/10.1103/PhysRevLett.75.3918

    Article  CAS  Google Scholar 

  57. P. Miró, M. Audiffred, T. Heine, An atlas of two-dimensional materials. Chem. Soc. Rev. 43(18), 6537–6554 (2014). https://doi.org/10.1039/c4cs00102h

    Article  CAS  Google Scholar 

  58. R.V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, E.W. Hill, K.S. Novoselov, K. Watanabe, T. Taniguchi, et al., Hunting for monolayer boron nitride: Optical and raman signatures. Small 7(4), 465–468 (2011). https://doi.org/10.1002/smll.201001628

    Article  CAS  Google Scholar 

  59. T. Taniguchi, K. Watanabe, Synthesis of high-purity boron nitride single crystals under high pressure by using Ba-BN solvent. J. Cryst. Growth 303(2), 525–529 (2007). https://doi.org/10.1016/j.jcrysgro.2006.12.061

    Article  CAS  Google Scholar 

  60. W. Auwärter, T.J. Kreutz, T. Greber, J. Osterwalder, XPD and STM investigation of hexagonal boron nitride on Ni(111). Surf. Sci. 429(1), 229–236 (1999). https://doi.org/10.1016/S0039-6028(99)00381-7

    Article  Google Scholar 

  61. T. Roy, M. Tosun, J.S. Kang, A.B. Sachid, S.B. Desai, M. Hettick, C.C. Hu, A. Javey, Field-effect transistors built from all two-dimensional material components. ACS Nano 8(6), 6259–6264 (2014). https://doi.org/10.1021/nn501723y

    Article  CAS  Google Scholar 

  62. S. Beniwal, J. Hooper, D.P. Miller, P.S. Costa, G. Chen, S.Y. Liu, P.A. Dowben, E.C.H. Sykes, E. Zurek, A. Enders, Graphene-like boron-carbon-nitrogen monolayers. ACS Nano 11(3), 2486–2493 (2017). https://doi.org/10.1021/acsnano.6b08136

    Article  CAS  Google Scholar 

  63. S. Azevedo, R. De Paiva, Structural stability and electronic properties of carbon-boron nitride compounds. Europhys. Lett. 75(1), 126–132 (2006). https://doi.org/10.1209/epl/i2006-10066-0

    Article  CAS  Google Scholar 

  64. S. Fajardo, R.F. García-Galvan, V. Barranco, J.C. Galvan, S.F. Batlle, Graphene-boron nitride composite: A material with advanced functionalities, in InTech, ed. by N. Hu, (Rijeka, Croatia, 2012). https://doi.org/10.5772/50729

  65. Q. Peng, S. De, Tunable band gaps of mono-layer hexagonal BNC heterostructures. Phys. E Low-Dimensional Syst. Nanostructures 44(7–8), 1662–1666 (2012). https://doi.org/10.1016/j.physe.2012.04.011

    Article  CAS  Google Scholar 

  66. J. Zhu, S. Bhandary, B. Sanyal, H. Ottosson, Interpolation of atomically thin hexagonal boron nitride and graphene: Electronic structure and thermodynamic stability in terms of all-carbon conjugated paths and aromatic hexagons. J. Phys. Chem. C 115(20), 10264–10271 (2011). https://doi.org/10.1021/jp2016616

    Article  CAS  Google Scholar 

  67. A.Y. Liu, R.M. Wentzcovitch, M.L. Cohen, Atomic arrangement and electronic structure of BC2N. Phys. Rev. B 39(3), 1760–1765 (1989). https://doi.org/10.1103/PhysRevB.39.1760

    Article  CAS  Google Scholar 

  68. Y. Gong, G. Shi, Z. Zhang, W. Zhou, J. Jung, W. Gao, L. Ma, Y. Yang, S. Yang, G. You, et al., Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers. Nat. Commun. 5 (2014). https://doi.org/10.1038/ncomms4193

  69. S.Z. Bai, B. Yao, G.Z. Xing, K. Zhang, W.H. Su, Synthesis, conductivity and high-pressure phase transition of amorphous boron carbon nitride. Phys. B Condens. Matter 396(1–2), 214–219 (2007). https://doi.org/10.1016/j.physb.2007.04.007

    Article  CAS  Google Scholar 

  70. M.A. Mannan, H. Noguchi, T. Kida, M. Nagano, N. Hirao, Y. Baba, Chemical bonding states and local structures of the oriented hexagonal BCN films synthesized by microwave plasma CVD. Mater. Sci. Semicond. Process. 11(3), 100–105 (2008). https://doi.org/10.1016/j.mssp.2009.04.003

    Article  CAS  Google Scholar 

  71. M.A. Mannan, H. Noguchi, T. Kida, M. Nagano, N. Hirao, Y. Baba, Growth and characterization of stoichiometric BCN films on highly oriented pyrolytic graphite by radiofrequency plasma enhanced chemical vapor deposition. Thin Solid Films 518(15), 4163–4169 (2010). https://doi.org/10.1016/j.tsf.2009.11.086

    Article  CAS  Google Scholar 

  72. H. Ling, J.D. Wu, J. Sun, W. Shi, Z.F. Ying, F.M. Li, Electron cyclotron resonance plasma-assisted pulsed laser deposition of boron carbon nitride films. Diam. Relat. Mater. 11(9), 1623–1628 (2002). https://doi.org/10.1016/S0925-9635(02)00047-X

    Article  CAS  Google Scholar 

  73. R. Zhang, Z. Li, J. Yang, Two-dimensional stoichiometric boron oxides as a versatile platform for electronic structure engineering. J. Phys. Chem. Lett. 8(18), 4347–4353 (2017). https://doi.org/10.1021/acs.jpclett.7b01721

    Article  CAS  Google Scholar 

  74. F.M. Arnold, G. Seifert, J. Kunstmann, Thermodynamic stability of borophene, B2O3 and other B1-xOx sheets. J. Phys. Commun. 4 031001 (2020). https://doi.org/10.1088/2399-6528/ab7a76

  75. C. Zhong, W. Wu, J. He, G. Ding, Y. Liu, D. Li, S.A. Yang, G. Zhang, Two-dimensional honeycomb borophene oxide: Strong anisotropy and nodal loop transformation. Nanoscale 11, 2468 (2019). https://doi.org/10.1039/C8NR08729F

    Article  CAS  Google Scholar 

  76. Z. Zhu, X. Cai, C. Niu, C. Wang, Y. Jia, Computational prediction of the diversity of monolayer boron phosphide allotropes. Appl. Phys. Lett. 109, 153107 (2016). https://doi.org/10.1063/1.4964763

    Article  CAS  Google Scholar 

  77. P. Ranjan, T.K. Sahu, R. Bhushan, S.S.R.K.C. Yamijala, D.J. Late, P. Kumar, A. Vinu, Freestanding borophene and its hybrids. Adv. Mater. 31, 1900353 (2019). https://doi.org/10.1002/adma.201900353

    Article  CAS  Google Scholar 

  78. N.T. Cuong, I. Tateishi, M. Cameau, M. Niibe, M. Umezawa, B. Slater, K. Yubuta, T. Kondo, M. Ogata, S. Okada, I. Matsuda, Topological Dirac nodal loops in non-symmorphic hydrogenated monolayer boron. Phys. Rev. B 101, 195412 (2020). https://doi.org/10.1103/PhysRevB.101.195412

  79. D. Fan, C. Yang, S. Lu, X. Hu, Two-dimensional boron monosulfides: Semiconducting and metallic polymorphs. arXiv 2018, arXiv:1803.03459

    Google Scholar 

  80. B. Mortazavi, T. Rabczuk, Boron monochalcogenides; stable and strong two-dimensional wide band-gap semiconductors. Energies 11, 1573 (2018). https://doi.org/10.3390/en11061573

    Article  CAS  Google Scholar 

  81. W. Auwärter, H.U. Suter, H. Sachdev, T. Greber, Synthesis of one monolayer hexagonal boron nitride on Ni(111) from B-trichloroborazine (ClBNH)3. Chem. Mater. 16, 343 (2004). https://doi.org/10.1021/cm034805s

    Article  CAS  Google Scholar 

  82. J. Osterwalder, W. Auwärter, M. Muntwiler, T. Greber, Growth morphologies and defect structure in hexagonal boron nitride films on Ni(111): A combined STM and XPD study. e-J. Surf. Sci. Nanotech. 1, 124 (2003). https://doi.org/10.1380/ejssnt.2003.124

    Article  CAS  Google Scholar 

  83. G.B. Grad, P. Blaha, K. Schwarz, W. Auwärter, T. Greber, Density functional theory investigation of the geometric and spintronic structure of h-BN/Ni(111) in view of photoemission and STM experiments. Phys. Rev. B 68, 085404 (2003). https://doi.org/10.1103/PhysRevB.68.085404

    Article  CAS  Google Scholar 

  84. W. Auwärter, Hexagonal boron nitride monolayers on metal supports: Versatile templates for atoms, molecules and nanostructures. Surf. Sci. Rep. 74, 1 (2019). https://doi.org/10.1016/j.surfrep.2018.10.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Kondo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kondo, T., Matsuda, I. (2021). Chemically Modified Borophene. In: Matsuda, I., Wu, K. (eds) 2D Boron: Boraphene, Borophene, Boronene. Springer, Cham. https://doi.org/10.1007/978-3-030-49999-0_5

Download citation

Publish with us

Policies and ethics