Skip to main content

Microglia in the Brain Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Abstract

Microglia are the brain resident phagocytes that act as the primary form of the immune defense in the central nervous system. These cells originate from primitive macrophages that arise from the yolk sac. Advances in imaging and single-cell RNA-seq technologies provided new insights into the complexity of microglia biology.

Microglia play an essential role in the brain development and maintenance of brain homeostasis. They are also crucial in injury repair in the central nervous system. The tumor microenvironment is complex and includes neoplastic cells as well as varieties of host and infiltrating immune cells. Microglia are part of the glioma microenvironment and play a critical part in initiating and maintaining tumor growth and spread. Microglia can also act as effector cells in treatments against gliomas. In this chapter, we summarize the current knowledge of how and where microglia are generated. We also discuss their functions during brain development, injury repair, and homeostasis. Moreover, we discuss the role of microglia in the tumor microenvironment of gliomas and highlight their therapeutic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abels ER, Maas SLN, Nieland L, Wei Z, Cheah PS, Tai E, Kolsteeg CJ, Dusoswa SA, Ting DT, Hickman S, El Khoury J, Krichevsky AM, Broekman MLD, Breakefield XO (2019) Glioblastoma-associated microglia reprogramming is mediated by functional transfer of extracellular miR-21. Cell Rep 28(12):3105–3119. e3107. https://doi.org/10.1016/j.celrep.2019.08.036

    Article  CAS  Google Scholar 

  2. Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Dev Brain Res 117(2):145–152. https://doi.org/10.1016/S0165-3806(99)00113-3

    Article  CAS  Google Scholar 

  3. Alliot F, Lecain E, Grima B, Pessac B (1991) Microglial progenitors with a high proliferative potential in the embryonic and adult mouse brain. Proc Natl Acad Sci U S A 88(4):1541–1545. https://doi.org/10.1073/pnas.88.4.1541

    Article  CAS  Google Scholar 

  4. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood-brain barrier. Nature 468(7323):557–561. https://doi.org/10.1038/nature09522

    Article  CAS  Google Scholar 

  5. Badie B, Schartner J, Prabakaran S, Paul J, Vorpahl J (2001) Expression of Fas ligand by microglia: possible role in glioma immune evasion. J Neuroimmunol 120(1–2):19–24. https://doi.org/10.1016/s0165-5728(01)00361-7

    Article  CAS  Google Scholar 

  6. Badie B, Schartner JM (2000) Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery 46(4):957–961; discussion 961–952. https://doi.org/10.1097/00006123-200004000-00035

    Article  CAS  Google Scholar 

  7. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, Mulinyawe SB, Bohlen CJ, Adil A, Tucker A, Weissman IL, Chang EF, Li G, Grant GA, Hayden Gephart MG, Barres BA (2016) New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A 113(12):E1738–E1746. https://doi.org/10.1073/pnas.1525528113

    Article  CAS  Google Scholar 

  8. Bettinger I, Thanos S, Paulus W (2002) Microglia promote glioma migration. Acta Neuropathol 103(4):351–355. https://doi.org/10.1007/s00401-001-0472-x

    Article  Google Scholar 

  9. Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O (2013) Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res 10(1):67–84. https://doi.org/10.1016/j.scr.2012.09.003

    Article  CAS  Google Scholar 

  10. Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38. https://doi.org/10.1152/ajpcell.00084.2014

    Article  CAS  Google Scholar 

  11. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17(1):131–143. https://doi.org/10.1038/nn.3599

    Article  CAS  Google Scholar 

  12. Butowski N, Colman H, De Groot JF, Omuro AM, Nayak L, Wen PY, Cloughesy TF, Marimuthu A, Haidar S, Perry A, Huse J, Phillips J, West BL, Nolop KB, Hsu HH, Ligon KL, Molinaro AM, Prados M (2016) Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro-Oncology 18(4):557–564. https://doi.org/10.1093/neuonc/nov245

    Article  Google Scholar 

  13. Carvalho da Fonseca AC, Wang H, Fan H, Chen X, Zhang I, Zhang L, Lima FR, Badie B (2014) Increased expression of stress inducible protein 1 in glioma-associated microglia/macrophages. J Neuroimmunol 274(1–2):71–77. https://doi.org/10.1016/j.jneuroim.2014.06.021

    Article  CAS  Google Scholar 

  14. Chen SK, Tvrdik P, Peden E, Cho S, Wu S, Spangrude G, Capecchi MR (2010) Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141(5):775–785. https://doi.org/10.1016/j.cell.2010.03.055

    Article  CAS  Google Scholar 

  15. Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL, Symons MH, Segall JE (2012) Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol Med 18:519–527. https://doi.org/10.2119/molmed.2011.00217

    Article  CAS  Google Scholar 

  16. Cunningham CL, Martinez-Cerdeno V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 33(10):4216–4233. https://doi.org/10.1523/JNEUROSCI.3441-12.2013

    Article  CAS  Google Scholar 

  17. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758. https://doi.org/10.1038/nn1472

    Article  CAS  Google Scholar 

  18. Dzaye O, Hu F, Derkow K, Haage V, Euskirchen P, Harms C, Lehnardt S, Synowitz M, Wolf SA, Kettenmann H (2016) Glioma stem cells but not bulk glioma cells upregulate IL-6 secretion in microglia/brain macrophages via toll-like receptor 4 signaling. J Neuropathol Exp Neurol 75(5):429–440. https://doi.org/10.1093/jnen/nlw016

    Article  CAS  Google Scholar 

  19. ElAli A, Rivest S (2016) Microglia ontology and signaling. Front Cell Dev Biol 4:72. https://doi.org/10.3389/fcell.2016.00072

    Article  Google Scholar 

  20. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B, Nguyen H, West BL, Green KN (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82(2):380–397. https://doi.org/10.1016/j.neuron.2014.02.040

    Article  CAS  Google Scholar 

  21. Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, Helft J, Chow A, Elpek KG, Gordonov S, Mazloom AR, Ma’ayan A, Chua WJ, Hansen TH, Turley SJ, Merad M, Randolph GJ, Immunological Genome C (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13(11):1118–1128. https://doi.org/10.1038/ni.2419

    Article  CAS  Google Scholar 

  22. Gholamin SM, Mitra SS, Feroze A, Liu J, Kahn S, Zhang M, Esparza R (2017) Disrupting the CD47-SIRPa anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Sci Transl Med 9(381):eaaf2968

    Article  Google Scholar 

  23. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. https://doi.org/10.1126/science.1194637

    Article  CAS  Google Scholar 

  24. Goodenberger ML, Jenkins RB (2012) Genetics of adult glioma. Cancer Genet 205(12):613–621. https://doi.org/10.1016/j.cancergen.2012.10.009

    Article  CAS  Google Scholar 

  25. Guerra DAP, Paiva AE, Sena IFG, Azevedo PO, Silva WN, Mintz A, Birbrair A (2018) Targeting glioblastoma-derived pericytes improves chemotherapeutic outcome. Angiogenesis 21(4):667–675. https://doi.org/10.1007/s10456-018-9621-x

    Article  CAS  Google Scholar 

  26. Gupta K, Burns TC (2018) Radiation-induced alterations in the recurrent glioblastoma microenvironment: therapeutic implications. Front Oncol 8:503. https://doi.org/10.3389/fonc.2018.00503

    Article  Google Scholar 

  27. Gutmann DH, Kettenmann H (2019) Microglia/brain macrophages as central drivers of brain tumor pathobiology. Neuron 104(3):442–449. https://doi.org/10.1016/j.neuron.2019.08.028

    Article  CAS  Google Scholar 

  28. Halleskog C, Mulder J, Dahlstrom J, Mackie K, Hortobagyi T, Tanila H, Kumar Puli L, Farber K, Harkany T, Schulte G (2011) WNT signaling in activated microglia is proinflammatory. Glia 59(1):119–131. https://doi.org/10.1002/glia.21081

    Article  Google Scholar 

  29. Hao CB, Beguinot F, Condorelli G, Alessandra Trencia EG, Van Meir V, Yong W, Parney IF, Roa WH, Petruk KC (2001) Induction and intracellular regulation of tumor necrosis factor-related apoptosisinducing ligand (TRAIL) mediated Apotosis in human malignant glioma cells. Cancer Res 61(3):1162–1170

    CAS  Google Scholar 

  30. Harrison JK, Jiang Y, Chen SZ, Xia YY, Maciejewski D, McNamara RK, Streit WJ, Salafranca MN, Adhikari S, Thompson DA, Botti P, Bacon KB, Feng LL (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A 95(18):10896–10901. https://doi.org/10.1073/pnas.95.18.10896

    Article  CAS  Google Scholar 

  31. Honda S (2001) Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. The Journal of Neuroscience 21(6):1975–1982

    Article  CAS  Google Scholar 

  32. Hutter G, Theruvath J, Graef CM, Zhang M, Schoen MK, Manz EM, Bennett ML, Olson A, Azad TD, Sinha R, Chan C, Assad Kahn S, Gholamin S, Wilson C, Grant G, He J, Weissman IL, Mitra SS, Cheshier SH (2019) Microglia are effector cells of CD47-SIRPalpha antiphagocytic axis disruption against glioblastoma. Proc Natl Acad Sci U S A 116(3):997–1006. https://doi.org/10.1073/pnas.1721434116

    Article  CAS  Google Scholar 

  33. Hwang SY, Jung JS, Kim TH, Lim SJ, Oh ES, Kim JY, Ji KA, Joe EH, Cho KH, Han IO (2006) Ionizing radiation induces astrocyte gliosis through microglia activation. Neurobiol Dis 21(3):457–467. https://doi.org/10.1016/j.nbd.2005.08.006

    Article  CAS  Google Scholar 

  34. Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, Traver D, van Rooijen N, Weissman IL (2009) CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138(2):271–285. https://doi.org/10.1016/j.cell.2009.05.046

    Article  CAS  Google Scholar 

  35. Jung SA, Aliberti J, Graemmel P, Sunshine M, Kreutzberg G, Sher A, Littman D (2000) Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20(11):4106–4114

    Article  CAS  Google Scholar 

  36. Kloepper J, Riedemann L, Amoozgar Z, Seano G, Susek K, Yu V, Dalvie N, Amelung RL, Datta M, Song JW, Askoxylakis V, Taylor JW, Lu-Emerson C, Batista A, Kirkpatrick ND, Jung K, Snuderl M, Muzikansky A, Stubenrauch KG, Krieter O, Wakimoto H, Xu L, Munn LL, Duda DG, Fukumura D, Batchelor TT, Jain RK (2016) Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci U S A 113(16):4476–4481. https://doi.org/10.1073/pnas.1525360113

    Article  CAS  Google Scholar 

  37. Komohara Y, Ohnishi K, Kuratsu J, Takeya M (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 216(1):15–24. https://doi.org/10.1002/path.2370

    Article  CAS  Google Scholar 

  38. Lepore F, D’Alessandro G, Antonangeli F, Santoro A, Esposito V, Limatola C, Trettel F (2018) CXCL16/CXCR6 axis drives microglia/macrophages phenotype in physiological conditions and plays a crucial role in glioma. Front Immunol 9:2750. https://doi.org/10.3389/fimmu.2018.02750

    Article  CAS  Google Scholar 

  39. Lou N, Takano T, Pei Y, Xavier AL, Goldman SA, Nedergaard M (2016) Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier. Proc Natl Acad Sci U S A 113(4):1074–1079. https://doi.org/10.1073/pnas.1520398113

    Article  CAS  Google Scholar 

  40. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. https://doi.org/10.1007/s00401-007-0243-4

    Article  Google Scholar 

  41. Maas SLN, Breakefield XO, Weaver AM (2017) Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27(3):172–188. https://doi.org/10.1016/j.tcb.2016.11.003

    Article  CAS  Google Scholar 

  42. Madry C, Kyrargyri V, Arancibia-Carcamo IL, Jolivet R, Kohsaka S, Bryan RM, Attwell D (2018) Microglial ramification, surveillance, and interleukin-1beta release are regulated by the two-pore domain K(+) channel THIK-1. Neuron 97(2):299–312. e296. https://doi.org/10.1016/j.neuron.2017.12.002

    Article  CAS  Google Scholar 

  43. Markovic DS, Vinnakota K, van Rooijen N, Kiwit J, Synowitz M, Glass R, Kettenmann H (2011) Minocycline reduces glioma expansion and invasion by attenuating microglial MT1-MMP expression. Brain Behav Immun 25(4):624–628. https://doi.org/10.1016/j.bbi.2011.01.015

    Article  CAS  Google Scholar 

  44. Masuda T, Sankowski R, Staszewski O, Bottcher C, Amann L, Sagar SC, Nessler S, Kunz P, van Loo G, Coenen VA, Reinacher PC, Michel A, Sure U, Gold R, Grun D, Priller J, Stadelmann C, Prinz M (2019) Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566(7744):388–392. https://doi.org/10.1038/s41586-019-0924-x

    Article  CAS  Google Scholar 

  45. Matias D, Dubois LG, Pontes B, Rosario L, Ferrer VP, Balca-Silva J, Fonseca ACC, Macharia LW, Romao L, TCLS ES, Chimelli L, Filho PN, Lopes MC, Abreu JG, Lima FRS, Moura-Neto V (2019) GBM-derived Wnt3a induces M2-like phenotype in microglial cells through Wnt/beta-catenin signaling. Mol Neurobiol 56(2):1517–1530. https://doi.org/10.1007/s12035-018-1150-5

    Article  CAS  Google Scholar 

  46. Matsumoto J, Takata F, Machida T, Takahashi H, Soejima Y, Funakoshi M, Futagami K, Yamauchi A, Dohgu S, Kataoka Y (2014) Tumor necrosis factor-alpha-stimulated brain pericytes possess a unique cytokine and chemokine release profile and enhance microglial activation. Neurosci Lett 578:133–138. https://doi.org/10.1016/j.neulet.2014.06.052

    Article  CAS  Google Scholar 

  47. Mattila S, Tuominen H, Koivukangas J, Stenback F (2009) The terminal prostaglandin synthases mPGES-1, mPGES-2, and cPGES are all overexpressed in human gliomas. Neuropathology 29(2):156–165. https://doi.org/10.1111/j.1440-1789.2008.00963.x

    Article  Google Scholar 

  48. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173. https://doi.org/10.4049/jimmunol.164.12.6166

    Article  CAS  Google Scholar 

  49. Monier A, Adle-Biassette H, Delezoide AL, Evrard P, Gressens P, Verney C (2007) Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. J Neuropathol Exp Neurol 66(5):372–382. https://doi.org/10.1097/nen.0b013e3180517b46

    Article  Google Scholar 

  50. Nakano Y, Kuroda E, Kito T, Uematsu S, Akira S, Yokota A, Nishizawa S, Yamashita U (2008) Induction of prostaglandin E2 synthesis and microsomal prostaglandin E synthase-1 expression in murine microglia by glioma-derived soluble factors. Laboratory investigation. J Neurosurg 108(2):311–319. https://doi.org/10.3171/JNS/2008/108/2/0311

    Article  CAS  Google Scholar 

  51. Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367–402. https://doi.org/10.1146/annurev-immunol-032713-120240

    Article  CAS  Google Scholar 

  52. Nikodemova M, Kimyon RS, De I, Small AL, Collier LS, Watters JJ (2015) Microglial numbers attain adult levels after undergoing a rapid decrease in cell number in the third postnatal week. J Neuroimmunol 278:280–288. https://doi.org/10.1016/j.jneuroim.2014.11.018

    Article  CAS  Google Scholar 

  53. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318. https://doi.org/10.1126/science.1110647

    Article  CAS  Google Scholar 

  54. Okada M, Saio M, Kito Y, Ohe N, Yano H, Yoshimura S, Iwama T, Takami T (2009) Tumor-associated macrophage/microglia infiltration in human gliomas is correlated with MCP-3, but not MCP-1. Int J Oncol 34(6):1621–1627. https://doi.org/10.3892/ijo_00000292

    Article  CAS  Google Scholar 

  55. Penfield W (1925) Microglia and the process of phagocytosis in gliomas. Am J Pathol 1(1):77–90. 15

    CAS  Google Scholar 

  56. Prinz M, Jung S, Priller J (2019) Microglia biology: one century of evolving concepts. Cell 179(2):292–311. https://doi.org/10.1016/j.cell.2019.08.053

    Article  CAS  Google Scholar 

  57. Prionisti I, Buhler LH, Walker PR, Jolivet RB (2019) Harnessing microglia and macrophages for the treatment of glioblastoma. Front Pharmacol 10:506. https://doi.org/10.3389/fphar.2019.00506

    Article  CAS  Google Scholar 

  58. Pu P, Zhang Z, Kang C, Jiang R, Jia Z, Wang G, Jiang H (2009) Downregulation of Wnt2 and beta-catenin by siRNA suppresses malignant glioma cell growth. Cancer Gene Ther 16(4):351–361. https://doi.org/10.1038/cgt.2008.78

    Article  CAS  Google Scholar 

  59. Qian J, Luo F, Yang J, Liu J, Liu R, Wang L, Wang C, Deng Y, Lu Z, Wang Y, Lu M, Wang JY, Chu Y (2018) TLR2 promotes glioma immune evasion by downregulating MHC class II molecules in microglia. Cancer Immunol Res 6(10):1220–1233. https://doi.org/10.1158/2326-6066.CIR-18-0020

    Article  CAS  Google Scholar 

  60. Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19(8):987–991. https://doi.org/10.1038/nn.4338

    Article  CAS  Google Scholar 

  61. Sena IFG, Paiva AE, Prazeres P, Azevedo PO, Lousado L, Bhutia SK, Salmina AB, Mintz A, Birbrair A (2018) Glioblastoma-activated pericytes support tumor growth via immunosuppression. Cancer Med 7(4):1232–1239. https://doi.org/10.1002/cam4.1375

    Article  Google Scholar 

  62. Shono T, Tofilon PJ, Bruner JM, Owolabi O, Lang FF (2001) Cyclooxygenase-2 expression in human gliomas: prognostic significance and molecular correlations. Cancer Res 61(11):4375–4381

    CAS  Google Scholar 

  63. Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7(4):483–495. https://doi.org/10.1016/j.stem.2010.08.014

    Article  CAS  Google Scholar 

  64. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178. https://doi.org/10.1016/j.cell.2007.10.036

    Article  CAS  Google Scholar 

  65. Svensson A, Ozen I, Genove G, Paul G, Bengzon J (2015) Endogenous brain pericytes are widely activated and contribute to mouse glioma microvasculature. PLoS One 10(4):e0123553. https://doi.org/10.1371/journal.pone.0123553

    Article  CAS  Google Scholar 

  66. Tay TL, Mai D, Dautzenberg J, Fernandez-Klett F, Lin G, Sagar DM, Drougard A, Stempfl T, Ardura-Fabregat A, Staszewski O, Margineanu A, Sporbert A, Steinmetz LM, Pospisilik JA, Jung S, Priller J, Grun D, Ronneberger O, Prinz M (2017) A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat Neurosci 20(6):793–803. https://doi.org/10.1038/nn.4547

    Article  CAS  Google Scholar 

  67. Tay TL, Savage JC, Hui CW, Bisht K, Tremblay ME (2017) Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J Physiol 595(6):1929–1945. https://doi.org/10.1113/JP272134

    Article  CAS  Google Scholar 

  68. Vinnakota K, Hu F, Ku MC, Georgieva PB, Szulzewsky F, Pohlmann A, Waiczies S, Waiczies H, Niendorf T, Lehnardt S, Hanisch UK, Synowitz M, Markovic D, Wolf SA, Glass R, Kettenmann H (2013) Toll-like receptor 2 mediates microglia/brain macrophage MT1-MMP expression and glioma expansion. Neuro-Oncology 15(11):1457–1468. https://doi.org/10.1093/neuonc/not115

    Article  CAS  Google Scholar 

  69. Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, Iwakura Y, Dinarello CA, Apte RN (2003) IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci U S A 100(5):2645–2650. https://doi.org/10.1073/pnas.0437939100

    Article  CAS  Google Scholar 

  70. Wallmann T, Zhang XM, Wallerius M, Bolin S, Joly AL, Sobocki C, Leiss L, Jiang Y, Bergh J, Holland EC, Enger PO, Andersson J, Swartling FJ, Miletic H, Uhrbom L, Harris RA, Rolny C (2018) Microglia induce PDGFRB expression in glioma cells to enhance their migratory capacity. iScience 9:71–83. https://doi.org/10.1016/j.isci.2018.10.011

    Article  CAS  Google Scholar 

  71. Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, Exiga M, Vadisiute A, Raggioli A, Schertel A, Schwab Y, Gross CT (2018) Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun 9(1):1228. https://doi.org/10.1038/s41467-018-03566-5

    Article  CAS  Google Scholar 

  72. Wes PD, Holtman IR, Boddeke EW, Moller T, Eggen BJ (2016) Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease. Glia 64(2):197–213. https://doi.org/10.1002/glia.22866

    Article  Google Scholar 

  73. Wiemer AJ, Hegde S, Gumperz JE, Huttenlocher A (2011) A live imaging cell motility screen identifies prostaglandin E2 as a T cell stop signal antagonist. J Immunol 187(7):3663–3670. https://doi.org/10.4049/jimmunol.1100103

    Article  CAS  Google Scholar 

  74. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin R, Cohen JD, Lovelace P, Scheeren FA, Chao MP, Weiskopf K, Tang C, Volkmer AK, Naik TJ, Storm TA, Mosley AR, Edris B, Schmid SM, Sun CK, Chua MS, Murillo O, Rajendran P, Cha AC, Chin RK, Kim D, Adorno M, Raveh T, Tseng D, Jaiswal S, Enger PO, Steinberg GK, Li G, So SK, Majeti R, Harsh GR, van de Rijn M, Teng NN, Sunwoo JB, Alizadeh AA, Clarke MF, Weissman IL (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A 109(17):6662–6667. https://doi.org/10.1073/pnas.1121623109

    Article  Google Scholar 

  75. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40(2):274–288. https://doi.org/10.1016/j.immuni.2014.01.006

    Article  CAS  Google Scholar 

  76. Ye XZ, Xu SL, Xin YH, Yu SC, Ping YF, Chen L, Xiao HL, Wang B, Yi L, Wang QL, Jiang XF, Yang L, Zhang P, Qian C, Cui YH, Zhang X, Bian XW (2012) Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-beta1 signaling pathway. J Immunol 189(1):444–453. https://doi.org/10.4049/jimmunol.1103248

    Article  CAS  Google Scholar 

  77. Zhang J, Sarkar S, Cua R, Zhou Y, Hader W, Yong VW (2012) A dialog between glioma and microglia that promotes tumor invasiveness through the CCL2/CCR2/interleukin-6 axis. Carcinogenesis 33(2):312–319. https://doi.org/10.1093/carcin/bgr289

    Article  CAS  Google Scholar 

  78. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947. https://doi.org/10.1523/JNEUROSCI.1860-14.2014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Cheshier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cole, A.P. et al. (2020). Microglia in the Brain Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1273. Springer, Cham. https://doi.org/10.1007/978-3-030-49270-0_11

Download citation

Publish with us

Policies and ethics