Skip to main content

Sunlight, UV Radiation, Vitamin D, and Skin Cancer: How Much Sunlight Do We Need?

  • Chapter
  • First Online:
Sunlight, Vitamin D and Skin Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1268))

Abstract

Vitamin D is the sunshine vitamin for good reason. During exposure to sunlight, the ultraviolet B photons enter the skin and photolyze 7-dehydrocholesterol to previtamin D3 which in turn is isomerized by the body’s temperature to vitamin D3. Most humans have depended on sun for their vitamin D requirement. Skin pigment, sunscreen use, aging, time of day, season, and latitude dramatically affect previtamin D3 synthesis. Vitamin D deficiency was thought to have been conquered, but it is now recognized that more than 50% of the world’s population is at risk for vitamin D deficiency. This deficiency is in part due to the inadequate fortification of foods with vitamin D and the misconception that a healthy diet contains an adequate amount of vitamin D. Vitamin D deficiency causes growth retardation and rickets in children and will precipitate and exacerbate osteopenia, osteoporosis and increase risk of fracture in adults. The vitamin D deficiency pandemic has other serious consequences including increased risk of common cancers, autoimmune diseases, infectious diseases, and cardiovascular disease. There needs to be a renewed appreciation of the beneficial effect of moderate sensible sunlight for providing all humans with their vitamin D requirement for health.

Sources of Support: Institutional

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holick MF. Phylogenetic and evolutionary aspects of vitamin D from phytoplankton to humans. In: Pang PKT, Schreibman MP, editors. Vertebrate endocrinology: fundamentals and biomedical implications, vol. 3. Orlando: Academic; 1989. p. 7–43.

    Google Scholar 

  2. Holick MF. Vitamin D: a millennium perspective. J Cell Biochem. 2003;88:296–307.

    CAS  PubMed  Google Scholar 

  3. Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest. 2006;116(8):2062–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sniadecki J. Jerdrzej Sniadecki (1768–1838) on the cure of rickets. (1840) Cited by W. Mozolowski. Nature. 1939;143:121–4.

    Google Scholar 

  5. Palm TA. The geographical distribution and aetiology of rickets. Practitioner. 1890;XLV(4):270–342.

    Google Scholar 

  6. Holick MF. Biologic effects of light: historical and new perspectives. In: Holick MF, Jung EG, editors. Biologic effects of light. Proceedings of a Symposium Basel, Switzerland; 1998 Nov 1–3, 1998; Boston: Kluwer Academic Publishers; 1999. p. 10–32.

    Google Scholar 

  7. Huldschinsky K. Heilung von Rachitis durch Kunstliche Hohensonne. Deutsche Med Wochenschr. 1919;45:712–3.

    Google Scholar 

  8. Hess AF, Unger LJ. The cure of infantile rickets by sunlight. JAMA. 1921;77:39–41.

    Google Scholar 

  9. Hess AF, Weinstock M. Antirachitic properties imparted to inert fluids and to green vegetables by ultraviolet irradiation. J Biol Chem. 1924;62:301–13.

    CAS  Google Scholar 

  10. Steenbock H, Black A. The reduction of growth-promoting and calcifying properties in a ration by exposure to ultraviolet light. J Biol Chem. 1924;61:408–22.

    Google Scholar 

  11. Park EA. The etiology of rickets. Physiol Rev. 1923;3:106–63.

    CAS  Google Scholar 

  12. Steenbock H. The induction of growth-prompting and calcifying properties in a ration exposed to light. Science. 1924;60:224–5.

    CAS  PubMed  Google Scholar 

  13. Hess AF. Rickets including osteomalacia and tetany. Pennsylvania: Lea J. Febiger; 1929. p. 401–29.

    Google Scholar 

  14. Holick MF, MacLaughlin JA, Clark MB, et al. Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science. 1980;210:203–5.

    CAS  PubMed  Google Scholar 

  15. Holick MF, MacLaughlin JA, Dobbelt SH. Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator. Science. 1981;211:590–3.

    CAS  PubMed  Google Scholar 

  16. Haddad JG, Walgate J, Miyyn C, et al. Vitamin D metabolite-binding proteins in human tissue. Biochem Biophys Acta. 1976;444:921–5.

    CAS  PubMed  Google Scholar 

  17. Haddad JG, Matsuoka LY, Hollis BW, et al. Human plasma transport of vitamin D after its endogenous synthesis. J Clin Invest. 1993;91:2552–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lamason RL, Mohideen MAPK, Mest JR, et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science. 2005;310(5755):1782–6.

    CAS  PubMed  Google Scholar 

  19. Lalueza-Fox C, Römpler H, Caramelli D, et al. A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Science (New York, NY). 2007;318:1453–5.

    CAS  Google Scholar 

  20. Clemens TL, Henderson SL, Adams JS, et al. Increased skin pigment reduces the capacity of skin to synthesis vitamin D3. Lancet. 1982;1:74–6.

    CAS  PubMed  Google Scholar 

  21. Matsuoka LY, Ide L, Wortsman J, et al. Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab. 1987;64:1165–8.

    CAS  PubMed  Google Scholar 

  22. Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab. 1988;67:373–8.

    CAS  PubMed  Google Scholar 

  23. Brot C, Vestergaad P, Kolthoff N, et al. Vitamin D status and its adequacy in healthy Danish premenopausal women: relationships to dietary intake, sun exposure and serum parathyroid hormone 40. Br J Nutr. 2001;86(1):S97–103.

    CAS  PubMed  Google Scholar 

  24. Wacker M, Holick MF. Sunlight and Vitamin D: a global perspective for health. Dermato-Endocrinology. 2013;5(1):51–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81.

    CAS  PubMed  Google Scholar 

  26. Biancuzzo RM, Clarke N, Reitz RE, Travison TG, Holick MF. Serum concentrations of 1,25-dihydroxyvitamin D2 and 1,25-dihydroxyvitamin D3 in response to vitamin D2 and vitamin D3 supplementation. J Clin Endocrinol Metab. 2013;98(3):973–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jan Y, Malik M, Yaseen M, Ahmad S, Imran M, Rasool S, Haq A. Vitamin D fortification of foods in India: present and past scenario. J Steroid Biochem Mol Biol. 2019;193:1–7.

    Google Scholar 

  28. Hossein-nezhad A, Holick MF. Vitamin D for health: a global perspective. Mayo Clin Proc. 2013;88(7):720–55.

    CAS  PubMed  Google Scholar 

  29. Stumpf WE, Sar M, Reid FA, et al. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science. 1979;206:1188–90.

    CAS  PubMed  Google Scholar 

  30. Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands. Endocr Rev. 2005;26:662–87.

    CAS  PubMed  Google Scholar 

  31. Bouillon R, Marcocci C, Carmeliet C, Bikle D, White JH, Dawson-Hughes B, Lips P, Munns CF, Lazaretti-Castro M, Giustina A, Bilezikian B. Skeletal and extraskeletal actions of vitamin D: current evidence and outstanding questions. Endocr Rev. 2019;40:1109–51.

    PubMed  Google Scholar 

  32. Hossein-nezhad A, Spira A, Holick MF. Influence of vitamin D status and vitamin D3 supplementation on genome wide expression of white blood cells: a randomized double-blind clinical trial. PLoS One. 2013;8(3):e58725. https://doi.org/10.1371/journal.pone.0058725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Apperly FL. The relation of solar radiation to cancer mortality in North America. Cancer Res. 1941;1:191–5.

    Google Scholar 

  34. Gorham ED, Garland CF, Garland FC, et al. Vitamin D and prevention of colorectal cancer. J Steroid Biochem Mol Biol. 2005;97(1–2):179–94.

    CAS  PubMed  Google Scholar 

  35. Hanchette CL, Schwartz GG. Geographic patterns of prostate cancer mortality. Cancer. 1992;70:2861–9.

    CAS  PubMed  Google Scholar 

  36. Grant WB. An estimate of premature cancer mortality in the U.S. due to inadequate doses of solar ultraviolet-B radiation. Cancer. 2002;70:2861–9.

    Google Scholar 

  37. Garland C, Garland F, Gorham E, et al. The role of vitamin D in prevention of cancer – analytic essay forum 112. Am J Public Health. 2006;96(2):252–61.

    PubMed  PubMed Central  Google Scholar 

  38. Cantorna MT, Zhu Y, Froicu M, Wittke A. Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am J Clin Nutr. 2004;80(Suppl):1717S–20S.

    CAS  PubMed  Google Scholar 

  39. Ponsonby A-L, McMichael A, van der Mei I. Ultraviolet radiation and autoimmune disease: insights from epidemiological research. Toxocology. 2002;181–182:71–8.

    Google Scholar 

  40. Rostand SG. Ultraviolet light may contribute to geographic and racial blood pressure differences. Hypertension. 1979;30:150–6.

    Google Scholar 

  41. Krause R, Buhring M, Hopfenmuller W, et al. Ultraviolet B and blood pressure. Lancet. 1998;352:709–10.

    CAS  PubMed  Google Scholar 

  42. Zittermann A, Schleithoff SS, Tenderich G, et al. Low vitamin D status: a contributing factor in the pathogenesis of congestive heart failure? J Am Coll Cardiol. 2003;41:105–12.

    CAS  PubMed  Google Scholar 

  43. McGrath J, Selten JP, Chant D. Long-term trends in sunshine duration and its association with schizophrenia birth rates and age at first registration – data from Australia and the Netherlands. Schizophr Res. 2002;54:199–212.

    PubMed  Google Scholar 

  44. Ahonen MH, Tenkanen L, Teppo L, et al. Prostate cancer risk and prediagnostic serum 25-hydroxyvitamin D levels (Finland). Cancer Causes Control. 2000;11:847–52.

    CAS  PubMed  Google Scholar 

  45. Feskanich JM, Fuchs CS, Kirkner GJ, et al. Plasma vitamin D metabolites and risk of colorectal cancer in women. Cancer Epidemiol Biomark Prev. 2004;13(9):1502–8.

    CAS  Google Scholar 

  46. Giovannucci E, Liu Y, Rimm EB, et al. Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. J Natl Cancer Inst. 2006;98:451–9.

    CAS  PubMed  Google Scholar 

  47. Chiu KC, Chu A, Go VLW, et al. Hypovitaminosis D is associated with insulin resistance and β cell dysfunction. Am J Clin Nutr. 2004;79:820–5.

    CAS  PubMed  Google Scholar 

  48. Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;3:1770–3.

    Google Scholar 

  49. Cannell JJ, Vieth R, Umhau JC, et al. Epidemic influenza and vitamin D. Epidemiol Infect. 2006;134(6):1129–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Camargo CA Jr, Rifas-Shiman SL, Litonjua AA, et al. Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Am J Clin Nutr. 2007;85(3):788–95.

    CAS  PubMed  Google Scholar 

  51. Bikle DD. Vitamin D: role in skin and hair. In: Feldman, et al., editors. Vitamin D: role in skin and hair. Amsterdam/Boston: Elsevier/Academic; 2005. p. 609–30.

    Google Scholar 

  52. Zerwekh JE, Breslau NA. Human placental production of 1α,25-dihydroxyvitamin D3: biochemical characterization and production in normal subjects and patients with pseudohypoparathyroidism. J Clin Endocrinol Metab. 1986;62(1):192–6.

    CAS  PubMed  Google Scholar 

  53. Adams JS, Hewison M. Update in vitamin D. J Clin Endocrinol Metab. 2010;95:471–8.

    PubMed  PubMed Central  Google Scholar 

  54. Schwartz GG, Whitlatch LW, Chen TC, et al. Human prostate cells synthesize 1,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3. Cancer Epidemiol Biomark Prev. 1998;7:391–5.

    CAS  Google Scholar 

  55. Tangpricha V, Flanagan JN, Whitlatch LW, et al. 25-hydroxyvitamin D-1α-hydroxylase in normal and malignant colon tissue. Lancet. 2001;357:1673–4.

    CAS  PubMed  Google Scholar 

  56. Cross HS, Bareis P, Hofer H, et al. 25- Hydroxyvitamin D3-1-hydroxylase and vitamin D receptor gene expression in human colonic mucosa is elevated during early cancerogenesis. Steroids. 2001;66:287–92.

    CAS  PubMed  Google Scholar 

  57. Mawer EB, Hayes ME, Heys SE, et al. Constitutive synthesis of 1,25-dihydroxyvitamin D3 by a human small cell lung cell line. J Clin Endocrinol Metab. 1994;79:554–60.

    CAS  PubMed  Google Scholar 

  58. Mantell DJ, Owens PE, Bundred NJ, et al. 1α,25-dihydroxyvitamin D3 inhibits angiogenesis in vitro and in vivo. Circ Res. 2000;87:214–20.

    CAS  PubMed  Google Scholar 

  59. Pittas AG, Dawson-Hughes B, Li T, et al. Vitamin D and calcium intake in relation to type 2 diabetes in women. Diabetes Care. 2006;29:650–6.

    CAS  PubMed  Google Scholar 

  60. Bouillon R, Marcocci C, Carmeliet G, et al. Skeletal and extraskeletal actions of vitamin D: Current evidence and outstanding questions. Endocr Rev. 2019;40:1109–1151.

    Google Scholar 

  61. Li YC. Vitamin D regulation of the renin-angiotensin system. J Cell Biochem. 2003;88:327–31.

    CAS  PubMed  Google Scholar 

  62. Lips P. Vitamin D status and nutrition in Europe and Asia. J Steroid Biochem Mol Biol. 2007;103(3–5):620–5.

    CAS  PubMed  Google Scholar 

  63. Chapuy MC, Schott AM, Garnero P, et al. Healthy elderly French women living at home have secondary hyperparathyroidism and high bone turnover in winter. J Clin Endocrinol Metab. 1996;81:1129–33.

    CAS  PubMed  Google Scholar 

  64. Malabanan A, Veronikis IE, Holick MF. Redefining vitamin D insufficiency. Lancet. 1998;351:805–6.

    CAS  PubMed  Google Scholar 

  65. Holick MF. The global D-Lemma: The Vitamin D deficiency pandemic even in sun drenched countries. J Cin Sci Research. 2018;July. ISSN 2277-5706.

    Google Scholar 

  66. Holick MF, Siris ES, Binkley N, et al. Prevalence of vitamin D inadequacy among postmenopausal North American women receiving osteoporosis therapy. J Clin Endocrinol Metab. 2005;90:3215–24.

    CAS  PubMed  Google Scholar 

  67. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment & prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30.

    CAS  PubMed  Google Scholar 

  68. Bakhtiyarova S, Lesnyak O, Kyznesova N, et al. Vitamin D status among patients with hip fracture and elderly control subjects in Yekaterinburg, Russia. Osteoporos Int. 2006;17:441–6.

    CAS  PubMed  Google Scholar 

  69. Gloth FM III, Gundberg CM, Hollis BW, et al. Vitamin D deficiency in homebound elderly persons. JAMA. 1995;274(21):1683–6.

    PubMed  Google Scholar 

  70. Sullivan SS, Rosen CJ, Halteman WA, et al. Adolescent girls in Maine at risk for vitamin D insufficiency. J Am Diet Assoc. 2005;105:971–4.

    CAS  PubMed  Google Scholar 

  71. Tangpricha V, Pearce EN, Chen TC, et al. Vitamin D insufficiency among free-living healthy young adults. Am J Med. 2002;112(8):659–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gordon CM, DePeter KC, Estherann G, et al. Prevalence of vitamin D deficiency among healthy adolescents. Arch Pediatr Adolesc Med. 2004;158:531–7.

    PubMed  Google Scholar 

  73. El-Hajj Fuleihan G, Nabulsi M, Choucair M, et al. Hypovitaminosis D in healthy school children. Pediatrics. 2001;107:E53.

    CAS  PubMed  Google Scholar 

  74. Marwaha RK, Tandon N, Reddy D, et al. Vitamin D and bone mineral density status of healthy schoolchildren in northern India. Am J Clin Nutr. 2005;82:477–82.

    CAS  PubMed  Google Scholar 

  75. Sedrani SH. Low 25-hydroxyvitamin D and normal serum calcium concentrations in Saudi Arabia: Riyadh region. Ann Nutr Metab. 1984;28:181–5.

    CAS  PubMed  Google Scholar 

  76. Lee JM, Smith JR, Philipp BL, et al. Vitamin D deficiency in a healthy group of mothers and newborn infants. Clin Pediatr. 2007;46:42–4.

    Google Scholar 

  77. Bodnar LM, Simhan HN, Powers RW, et al. High prevalence of vitamin D insufficiency in black and white pregnant women residing in the northern United States and their neonates. J Nutr. 2007;137:447–52.

    CAS  PubMed  Google Scholar 

  78. Standing Committee on the Scientific Evaluation of Dietary Reference Intakes Food and Nutrition Board Institute of Medicine 1997. Vitamin D. In: Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, DC: National Academy Press; 1999. p. 250–87.

    Google Scholar 

  79. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–8.

    CAS  PubMed  Google Scholar 

  80. Holick MF. Vitamin D is not as toxic as was once thought: a historical and an up-to-date perspective. Mayo Clin Proc. 2015 May;90(5):561–4.

    PubMed  Google Scholar 

  81. Luxwolda MF, Kuipers RS, Kema IP, Dijck-Brouwer DA, Muskiet FAJ. Traditionally living populations in East Africa have a mean serum 25-hydroxyvitamin D concentration of 115 nmol/l. Br J Nutr. 2012;108:1557–61.

    CAS  PubMed  Google Scholar 

  82. Hollis BW, Wagner CL, Howard CR, Ebeling M, Shary JR, Smith PG, Taylor SN, Morella K, Lawrence RA, Hulsey TC. Maternal versus infant vitamin D supplementation during lactation. Pediatrics. 2015;136(4):625–34. https://doi.org/10.1542/peds.2015-1669.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Holick MF. A call to action: pregnant women in-deed require vitamin D supplementation for better health outcomes. J Clin Endocrinol Metab. 2019 Jan;104(1):13–5. PMID: 30239761.

    Google Scholar 

  84. Ekwaru JP, Zwicker JD, Holick MF, Giovannucci E, Veugelers PJ. The importance of body weight for the dose response relationship of oral vitamin D supplementation and serum 25-hydroxyvitamin D in healthy volunteers. PLoS One. 2014 Nov; https://doi.org/10.1371/journal.pone.0111265.

  85. Pludowski P, Grant WB, Konstantynowicz J, Holick MF. Editorial: classic and pleiotropic actions of vitamin D. Front Endocrinol. 2019 May 29. https://doi.org/10.3389/fendo.2019.00341.

  86. Cooper C, Javaid K, Westlake S, et al. Developmental origins of osteoporotic fracture: the role of maternal vitamin D insufficiency. J Nutr. 2005;135:2728S–2734S.87.

    CAS  PubMed  Google Scholar 

  87. Holick MF. Vitamin D: the underappreciated D-lightful hormone that is important for skeletal and cellular health. Curr Opin Endocrinol Diabetes Obes. 2002;9:87–98.

    CAS  Google Scholar 

  88. Reid IR, Gallagher DJA, Bosworth J. Prophylaxis against vitamin D deficiency in the elderly by regular sunlight exposure. Age Ageing. 1985;15:35–40.

    Google Scholar 

  89. Holick MF, Chen TC, Sauter ER. Vitamin D and skin physiology: a D-lightful story. J Bone Miner Res. 2007;22(S2):V28–33.

    CAS  PubMed  Google Scholar 

  90. Kennedy C, Bajdik CD, Willemze R, et al. The influence of painful sunburns and lifetime of sun exposure on the risk of actinic keratoses, seborrheic warts, melanocytic nevi, atypical nevi and skin cancer. J Invest Dermatol. 2003;120(6):1087–93.

    CAS  PubMed  Google Scholar 

  91. Garland FC, Garland CF. Occupational sunlight exposure and melanoma in the U.S. Navy. Arch Environ Health. 1990;45:261–7.

    CAS  PubMed  Google Scholar 

  92. Holick MF. Can you have your cake and eat it too? The sunlight D-lema. Br J Dermatol. 2016 Dec; 175(6):1129–31. PMID: 27996132.

    Google Scholar 

  93. Greaves M. Was skin cancer a selective force for black pigmentation in early hominin evolution? Proc R Soc B. 2014;281:20132955. https://doi.org/10.1098/rspb.2013.2955.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Holick MF. Biologic effects of sunlight, ultraviolet radiation, visible light, infrared, and vitamin D for health. Anticancer. 2016;36:1345–56.

    CAS  Google Scholar 

  95. Petersen B, Wulf HC, Triguero-mas M, et al. Sun and ski holidays improve vitamin D status, but are associated with high levels of DNA damage. J Invest Dermatol. 2014;134:2806–13.

    CAS  PubMed  Google Scholar 

  96. Felton SJ, Cooke MS, Kift R, Berry JL, Webb AR, Lam PMW, de Gruijl FR, Vail A, Rhodes LE. Concurrent beneficial (vitamin D production) and hazardous (cutaneous DNA damage) impact of repeated low-level summer sunlight exposures. Br J Dermatol. 2016;175(6):1320–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Vieth R, Garland C, Heaney R, et al. The urgent need to reconsider recommendations for vitamin D nutrition intake. Am J Clin Nutr. 2007;85:649–50.

    CAS  PubMed  Google Scholar 

  98. Tangpricha V, Turner A, Spina C, et al. Tanning is associated with optimal vitamin D status (serum 25-hydroxyvitamin D concentration) and higher bone mineral density. Am J Clin Nutr. 2004;80:1645–9.

    CAS  PubMed  Google Scholar 

  99. MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76:1536–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chuck A, Todd J, Diffey B. Subliminal ultraviolet-B irradiation for the prevention of vitamin D deficiency in the elderly: a feasibility study. Photochem Photoimmun Photomed. 2001;17(4):168–71.

    CAS  Google Scholar 

  101. Berwick M, Armstrong BK, Ben-Porat L, et al. Sun exposure and mortality from melanoma. J Natl Cancer Inst. 2005;97:195–9.

    PubMed  Google Scholar 

  102. Chang ET, Smedby KE, Hjalgrim H, et al. Family history of hematopoietic malignancy and risk of lymphoma. J Natl Cancer Inst. 2005;97:1466–74.

    PubMed  Google Scholar 

  103. Reichrath J, Zouboulis CC, Vogt T, Holick MF. Targeting the vitamin D endocrine system (VDES) for the management of inflammatory and malignant skin diseases: an historical view and outlook. Rev Endocr Metab Disord. 2016 Sept 6; 17(3):405–17. PMID: 27447175.

    Google Scholar 

  104. Wolpowitz D, Gilchrest BA. The vitamin D questions: how much do you need and how should you get it? J Am Acad Dermatol. 2006;54:301–17.

    PubMed  Google Scholar 

  105. Slominski AT, Kim TK, Janjetovic Z, Tuckey RC, Bieniek R, Yue J, Li W, Chen J, Nguyen MN, Tang EKY, Miller D, Chen TC, Holick MF. 20-Hydroxyvitamin D2 is a noncalcemic analog of vitamin D with potent antiproliferative and prodifferentiation activities in normal and malignant cells. Am J Phys Cell Phys. 2011;300:C526–41.

    CAS  Google Scholar 

  106. Kalajian TA, Aldoukhi A, Veronikis AJ, Persons K, Holick MF. Ultraviolet B light emitting diodes (LEDs) are more efficient and effective in producing vitamin D3 in human skin compared to natural sunlight. Nat Sci Rep. 2017;7:11489. https://doi.org/10.1038/s41598-017-11362-2.

    Article  CAS  Google Scholar 

  107. Kockott D, Herzog B, Reichrath J, Keane K, Holick MF. New approach to develop optimized sunscreens that enable cutaneous vitamin D formation with minimal erythema risk. PLoS One. 2016;11(1):e0145509.

    PubMed  PubMed Central  Google Scholar 

  108. Juzeniene A, Brekke P, Dahlback A, Andersson-Engels S, Reichrath J, Moan K, Holick MF, Grant WB, Moan J. Solar radiation and human health. Rep Prog Phys. 2011;74:1–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Holick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holick, M.F. (2020). Sunlight, UV Radiation, Vitamin D, and Skin Cancer: How Much Sunlight Do We Need?. In: Reichrath, J. (eds) Sunlight, Vitamin D and Skin Cancer. Advances in Experimental Medicine and Biology, vol 1268. Springer, Cham. https://doi.org/10.1007/978-3-030-46227-7_2

Download citation

Publish with us

Policies and ethics