Skip to main content

Numerical Methods for Coupled Population Balance Systems Applied to the Dynamical Simulation of Crystallization Processes

  • Chapter
  • First Online:
Dynamic Flowsheet Simulation of Solids Processes

Abstract

Uni- and bi-variate crystallization processes are considered that are modeled with population balance systems (PBSs). Experimental results for uni-variate processes in a helically coiled flow tube crystallizer are presented. A survey on numerical methods for the simulation of uni-variate PBSs is provided with the emphasis on a coupled stochastic-deterministic method. In this method, the equations of the PBS from computational fluid dynamics are solved deterministically and the population balance equation is solved with a stochastic algorithm. With this method, simulations of a crystallization process in a fluidized bed crystallizer are performed that identify appropriate values for two parameters of the model such that considerably improved results are obtained than reported so far in the literature. For bi-variate processes, the identification of agglomeration kernels from experimental data is briefly discussed. Even for multi-variate processes, an efficient algorithm for evaluating the agglomeration term is presented that is based on the fast Fourier transform (FFT). The complexity of this algorithm is discussed as well as the number of moments that can be conserved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahrens, R., Le Borne, S.: FFT-based evaluation of multivariate aggregation integrals in population balance equations on uniform tensor grids. J. Comput. Appl. Math. 338, 280–297 (2018)

    Article  Google Scholar 

  2. Ahrens, R., Le Borne, S.: Tensor trains and moment conservation for multivariate aggregation in population balance modeling. Appl. Numer. Math. 153, 473–491 (2020)

    Google Scholar 

  3. Anker, F., Ganesan, S., John, V., Schmeyer, E.: A comparative study of a direct discretization and an operator-splitting solver for population balance systems. Comput. Chem. Eng. 75, 95–104 (2015)

    Article  CAS  Google Scholar 

  4. Bartsch, C.: A coupled stochastic-deterministic method for the numerical solution of population balance systems. Ph.D. Thesis, Freie Universität Berlin, Department of Mathematics and Computer Science (2018)

    Google Scholar 

  5. Bartsch, C., John, V., Patterson, R.I.A.: Simulations of an ASA flow crystallizer with a coupled stochastic-deterministic approach. Comput. Chem. Eng. 124, 350–363 (2019)

    Google Scholar 

  6. Bartsch, C., Wiedmeyer, V., Lakdawala, Z., Patterson, R.I.A., Voigt, A., Sundmacher, K., John, V.: Stochastic-deterministic population balance modeling and simulation of a fluidized bed crystallizer experiment. Chem. Eng. Sci. 208, 115102 (2019)

    Google Scholar 

  7. Berg, H.C.: Random Walks in Biology. Princeton University Press, Princeton, NJ (1983)

    Google Scholar 

  8. Bird, G.A.: Direct simulation and the Boltzmann equation. Phys. Fluids 13(11), 2676–2681 (1970)

    Article  CAS  Google Scholar 

  9. Borchert, C., Sundmacher, K.: Efficient formulation of crystal shape evolution equations. Chem. Eng. Sci. 84, 85–99 (2012)

    Google Scholar 

  10. Borchert, C., Sundmacher, K.: Morphology evolution of crystal populations: modeling and observation analysis. Chem. Eng. Sci. 70, 87–98 (2012)

    Google Scholar 

  11. Borchert, C., Temmel, E., Eisenschmidt, H., Lorenz, H., Seidel-Morgenstern, A., Sundmacher, K.: Image-based in situ identification of face specific crystal growth rates from crystal populations. Cryst. Growth Des. 14(3), 952–971 (2014)

    Article  CAS  Google Scholar 

  12. Bordás, R., John, V., Schmeyer, E., Thévenin, D.: Measurement and simulation of a droplet population in a turbulent flow field. Comput. Fluids 66, 52–62 (2012)

    Google Scholar 

  13. Bordás, R., John, V., Schmeyer, E., Thévenin, D.: Numerical methods for the simulation of a coalescence-driven droplet size distribution. Theoret. Comput. Fluid Dyn. 27(3–4), 253–271 (2013)

    Google Scholar 

  14. Boris, J.P., Book, D.L.: Flux-corrected transport. I: SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11, 38–69 (1973)

    Google Scholar 

  15. Le Borne, S., Eisenschmidt, H., Sundmacher, K.: Image-based analytical crystal shape computation exemplified for potassium dihydrogen phosphate (KDP). Chem. Eng. Sci. 139, 61–74 (2016)

    Google Scholar 

  16. Le Borne, S., Shahmuradyan, L., Sundmacher, K.: Fast evaluation of univariate aggregation integrals on equidistant grids. Comput. Chem. Eng. 74, 115–127 (2015)

    Google Scholar 

  17. Bramley, A.S., Hounslow, M.J., Ryall, R.L.: Aggregation during precipitation from solution: a method for extracting rates from experimental data. J. Colloid Interf. Sci. 183(1), 155–165 (1996)

    Article  CAS  Google Scholar 

  18. Buffo, A., Vanni, M., Marchisio, D.L., Fox, R.O.: Multivariate quadrature-based moments methods for turbulent polydisperse gas-liquid systems. Int. J. Multiphase Flow 50, 41–57 (2013)

    Article  CAS  Google Scholar 

  19. Chakraborty, J., Kumar, J., Singh, M., Mahoney, A., Ramkrishna, D.: Inverse problems in population balances. Determination of aggregation kernel by weighted residuals. Ind. Eng. Chem. Res. 54(42), 10530–10538 (2015)

    Google Scholar 

  20. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19(90), 297–297 (1965)

    Google Scholar 

  21. Dosta, M., Hartge, E.-U., Ahrens, R., Heinrich, S., Le Borne, S.: Investigation of an FFT-based solver applied to dynamic flowsheet simulation of agglomeration processes. Adv. Powder Technol. 30, 555–564 (2019)

    Article  Google Scholar 

  22. Eisenschmidt, H., Soumaya, M., Bajcinca, N., Le Borne, S., Sundmacher, K.: Estimation of aggregation kernels based on Laurent polynomial approximation. Comput. Chem. Eng. 103, 210–217 (2017)

    Article  CAS  Google Scholar 

  23. Ferreira, T., Rasband, Wayne: ImageJ User GuideIJ 1, 46r (2012)

    Google Scholar 

  24. Ganesan, S., John, V., Matthies, G., Meesala, R., Abdus, S., Wilbrandt, U.: An object oriented parallel finite element scheme for computing PDEs: design and implementation. In: IEEE 23rd International Conference on High Performance Computing Workshops (HiPCW) Hyderabad, pp. 106–115. IEEE (2016)

    Google Scholar 

  25. Ganesan, S.: An operator-splitting Galerkin/SUPG finite element method for population balance equations: stability and convergence. ESAIM Math. Model. Numer. Anal. 46(6), 1447–1465 (2012)

    Google Scholar 

  26. Ganesan, S., Tobiska, L.: An operator-splitting finite element method for the efficient parallel solution of multidimensional population balance systems. Chem. Eng. Sci. 69(1), 59–68 (2012)

    Article  CAS  Google Scholar 

  27. Ganesan, S., Tobiska, L.: Operator-splitting finite element algorithms for computations of high-dimensional parabolic problems. Appl. Math. Comput. 219(11), 6182–6196 (2013)

    Google Scholar 

  28. Gillespie, D.T.: The stochastic coalescence model for cloud droplet growth. J. Atmos. Sci. 29(8), 1496–1510 (1972)

    Article  Google Scholar 

  29. Gillespie, D.T.: An exact method for numerically simulating the stochastic coalescence process in a cloud. J. Atmos. Sci. 32(10), 1977–1989 (1975)

    Article  Google Scholar 

  30. Hackbusch, W.: On the efficient evaluation of coalescence integrals in population balance models. Computing 78(2), 145–159 (2006)

    Google Scholar 

  31. Hackbusch, W., John, V., Khachatryan, A., Suciu, C.: A numerical method for the simulation of an aggregation-driven population balance system. Int. J. Numer. Methods Fluids 69(10), 1646–1660 (2012)

    Article  CAS  Google Scholar 

  32. Harten, A., Engquist, B., Osher, S., Chakravarthy, Sukumar R.: Uniformly high-order accurate essentially nonoscillatory schemes. III. J. Comput. Phys. 71(2), 231–303 (1987)

    Article  Google Scholar 

  33. Hulburt, H.M., Katz, S.: Some problems in particle technology: a statistical mechanical formulation. Chem. Eng. Sci. 19(8), 555–574 (1964)

    Article  CAS  Google Scholar 

  34. John, V., Angelov, I., Öncül, A.A., Thévenin, D.: Techniques for the reconstruction of a distribution from a finite number of its moments. Chem. Eng. Sci. 62(11), 2890–2904 (2007)

    Article  CAS  Google Scholar 

  35. John, V.: Finite element methods for incompressible flow problems. In: Springer Series in Computational Mathematics, vol. 51. Springer, Cham (2016)

    Google Scholar 

  36. John, V., Mitkova, T., Roland, M., Sundmacher, K., Tobiska, L., Voigt, A.: Simulations of population balance systems with one internal coordinate using finite element methods. Chem. Eng. Sci. 64(4), 733–741 (2009)

    Article  CAS  Google Scholar 

  37. John, V., Novo, Julia: On (essentially) non-oscillatory discretizations of evolutionary convection-diffusion equations. J. Comput. Phys. 231(4), 1570–1586 (2012)

    Article  Google Scholar 

  38. John, V., Roland, M.: On the impact of the scheme for solving the higher dimensional equation in coupled population balance systems. Int. J. Numer. Methods Engrg. 82(11), 1450–1474 (2010)

    Google Scholar 

  39. John, V., Schmeyer, E.: Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion. Comput. Methods Appl. Mech. Engrg. 198(3–4), 475–494 (2008)

    Google Scholar 

  40. John, V., Suciu, C.: Direct discretizations of bi-variate population balance systems with finite difference schemes of different order. Chem. Eng. Sci. 106, 39–52 (2014)

    Article  CAS  Google Scholar 

  41. John, V., Thein, F.: On the efficiency and robustness of the core routine of the quadrature method of moments (QMOM). Chem. Eng. Sci. 75, 327–333 (2012)

    Article  CAS  Google Scholar 

  42. Kuzmin, D.: Explicit and implicit FEM-FCT algorithms with flux linearization. J. Comput. Phys. 228(7), 2517–2534 (2009)

    Google Scholar 

  43. Kuzmin, D., Möller, M.: Algebraic flux correction. I. Scalar conservation laws. In: Flux-corrected transport, Sci. Comput., pp. 155–206. Springer, Berlin (2005)

    Google Scholar 

  44. Lewis, A., Seckler, M., Kramer, H., van Rosmalen, G.: Fundamentals and Applications. Cambridge University Press, Industrial Crystallization (2015)

    Google Scholar 

  45. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    Google Scholar 

  46. Löhner, R., Morgan, K., Peraire, J., Vahdati, M.: Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations. Int. J. Numer. Methods Fluids 7, 1093–1109 (1987)

    Google Scholar 

  47. Marchisio, D.L., Fox, R.O.: Solution of population balance equations using the direct quadrature method of moments. J. Aerosol Sci. 36(1), 43–73 (2005)

    Article  CAS  Google Scholar 

  48. Marchisio, D.L., Dennis Vigil, R., Fox, R.O.: Quadrature method of moments for aggregation-breakage processes. J. Colloid Interf. Sci. 258(2), 322–334 (2003)

    Google Scholar 

  49. McGraw, R.: Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 27(2), 255–265 (1997)

    Article  CAS  Google Scholar 

  50. Nussbaumer, H.J.: Fast Fourier Transform and Convolution Algorithms. Springer, Berlin (1982)

    Google Scholar 

  51. Ochsenbein, D.R., Vetter, T., Morari, M., Mazzotti, M.: Agglomeration of needle-like crystals in suspension. II. Modeling. Crystal Growth Des. 15(9), 4296–4310 (2015)

    Google Scholar 

  52. Patterson, R.I.A., Wagner, W.: A stochastic weighted particle method for coagulation-advection problems. SIAM J. Sci. Comput. 34(3), B290–B311 (2012)

    Google Scholar 

  53. Patterson, R.I.A., Wagner, W., Kraft, M.: Stochastic weighted particle methods for population balance equations. J. Comput. Phys. 230(19), 7456–7472 (2011)

    Google Scholar 

  54. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  55. Roos, H.-G., Stynes, M., Tobiska, L.: Robust numerical methods for singularly perturbed differential equations, volume 24 of Springer Series in Computational Mathematics. Convection-Diffusion-Reaction and Flow Problems, 2nd edn. Springer, Berlin (2008)

    Google Scholar 

  56. Shahmuradyan, L., Le Borne, S.: Algorithms for the Haar wavelet based fast evaluation of aggregation integrals in population balance equations. Appl. Numer. Math. 108, 1–20 (2016)

    Google Scholar 

  57. Shahmuradyan, L., Le Borne, S.: Fast algorithms for hp-discretized univariate population balance aggregation integrals. Comput. Chem. Eng. 97, 1–12 (2017)

    Google Scholar 

  58. Sagaut, P.: Large eddy simulation for incompressible flows. In: Scientific Computation, 3rd edn. Springer, Berlin. An introduction, Translated from the 1998 French original. With forewords by Lesieur, M., Germano, M. With a foreword by Meneveau, C. (2006)

    Google Scholar 

  59. Scharfetter, D.L., Gummel, H.K.: Large signal analysis of a silicon read diode. IEEE Trans. Elec. Dev. 16, 64–77 (1969)

    Article  Google Scholar 

  60. Schmeyer, E., Bordás, R., Thévenin, D., John, V.: Numerical simulations and measurements of a droplet size distribution in a turbulent vortex street. Meteorologische Zeitschrift 23(4), 387–396 (2014)

    Google Scholar 

  61. Schorsch, S., Hours, J.-H., Vetter, T., Mazzotti, M., Jones, C.N.: An optimization-based approach to extract faceted crystal shapes from stereoscopic images. Comput. Chem. Eng. 75, 171–183 (2015)

    Article  CAS  Google Scholar 

  62. Shahmuradyan, L.: Efficient and accurate evaluation of aggregation integrals in population balance equations. Ph.D. Thesis, Hamburg University of Technology, Institute of Mathematics (2016)

    Google Scholar 

  63. Si, H.: TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), Art. 11, 36 (2015)

    Google Scholar 

  64. Temmel, E., Eisenschmidt, H., Lorenz, H., Sundmacher, K., Seidel-Morgenstern, A.: A short-cut method for the quantification of crystallization kinetics. 1. Method development. Cryst. Growth Des. 16(12), 6743–6755 (2016)

    Google Scholar 

  65. Terdenge, L.M., Heisel, S., Schembecker, G., Wohlgemuth, K.: Agglomeration degree distribution as quality criterion to evaluate crystalline products. Chem. Eng. Sci. 133, 157–169 (2015)

    Google Scholar 

  66. Wiedmeyer, V., Anker, F., Bartsch, C., Voigt, A., John, V., Sundmacher, K.: Continuous crystallization in a helically coiled flow tube: analysis of flow field, residence time behavior, and crystal growth. Ind. Eng. Chem. Res. 56(13), 3699–3712 (2017)

    Article  CAS  Google Scholar 

  67. Wiedmeyer, V., Voigt, A., Sundmacher, K.: Crystal population growth in a continuous helically coiled flow tube crystallizer. Chem. Eng. Technol. 40(9), 1584–1590 (2017)

    Google Scholar 

  68. Wilbrandt, U., Bartsch, C., Ahmed, N., Alia, N., Anker, F., Blank, L., Caiazzo, A., Ganesan, S., Giere, S., Matthies, G., Meesala, R., Shamim, A., Venkatesan, J., John, V.: ParMooN—a modernized program package based on mapped finite elements. Comput. Math. Appl. 74(1), 74–88 (2017)

    Article  Google Scholar 

  69. Wright, H.A., Ramkrishna, D.: Solutions of inverse problems in population balances—I. Aggregation kinetics. Comput. Chem. Eng. 16(12), 1019–1038 (1992)

    Article  CAS  Google Scholar 

  70. Zalesak, Steven T.: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31(3), 335–362 (1979)

    Article  Google Scholar 

  71. Zeidler, Eberhard: Springer-Handbuch der Mathematik I. Springer Spektrum, Wiesbaden (2013)

    Book  Google Scholar 

Download references

Acknowledgements

The work at this report was supported by the grants JO329/10-3, BO4141/1-3, and SU189/6-3 within the DFG priority programme 1679: Dynamic simulation of interconnected solids processes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker John .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahrens, R. et al. (2020). Numerical Methods for Coupled Population Balance Systems Applied to the Dynamical Simulation of Crystallization Processes. In: Heinrich, S. (eds) Dynamic Flowsheet Simulation of Solids Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-45168-4_14

Download citation

Publish with us

Policies and ethics