Skip to main content

Construction of Dynamically Stable Solutions in Differential Network Games

  • Conference paper
  • First Online:
Stability, Control and Differential Games

Part of the book series: Lecture Notes in Control and Information Sciences - Proceedings ((LNCOINSPRO))

Abstract

This paper presents a novel measure of the worth of coalitions—named as a cooperative-trajectory characteristic function—to generate a time-consistent Shapley value solution in a class of network differential games. This new class of characteristic function is evaluated along the cooperative trajectory. It measures the worth of coalitions under the process of cooperation instead of under minmax confrontation or Nash non-cooperative stance. The resultant time-consistent Shapley value calibrates the marginal contributions of individual players to the grand coalition payoff based on their cooperative actions/strategy. The cooperative-trajectory characteristic function is also time consistent and yields a new cooperative solution in network differential games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, H., Ertin, E.: MiniMax equilibrium of networked differential games. ACM Trans. Auton. Adapt. Syst. 3(4) (2018). https://doi.org/10.1145/1452001.1452004

    Article  Google Scholar 

  2. Gromova, E.: The Shapley Value as a Sustainable Cooperative Solution in Differential Games of Three Players. Recent Advances in Game Theory and Applications, Static & Dynamic Game Theory: Foundations & Applications. Springer (2016). https://doi.org/10.1007/978-3-319-43838-2_4

    Chapter  Google Scholar 

  3. Krasovskii, N.N.: Control of Dynamic System. Nauka (1985)

    Google Scholar 

  4. Mazalov, V., Chirkova, J.V.: Networking Games: Network Forming Games and Games on Networks. Academic Press (2019)

    Google Scholar 

  5. Meza, M.A.G., Lopez-Barrientos, J.D.: A differential game of a duopoly with network externalities. In: Petrosyan, L.A., Mazalov, V.V. (eds.) Recent Advances in Game Theory and Applications. Springer, Birkhäuser (2016). https://doi.org/10.1007/978-3-319-43838-2

    Google Scholar 

  6. Pai, H.M.: A differential game formulation of a controlled network. Queueing Syst.: Theory Appl. Arch. 64(4), 325–358 (2010)

    Article  MathSciNet  Google Scholar 

  7. Petrosian, O.L., Gromova, E.V., Pogozhev, S.V.: Strong time-consistent subset of core in cooperative differential games with finite time horizon. Math. Theory Games Appl. 8(4), 79–106 (2016)

    Google Scholar 

  8. Petrosjan, L.A.: The Shapley value for differential games. In: Olsder G.J. (ed.) New Trends in Dynamic Games and Applications. Annals of the International Society of Dynamic Games, vol. 3, pp. 409–417. Birkhäuser Boston (1995)

    Chapter  Google Scholar 

  9. Petrosyan, L.A.: Cooperative differential games on networks. Trudy Inst. Mat. i Mekh. UrO RAN 16(5), 143–150 (2010)

    Google Scholar 

  10. Petrosyan, L., Zaccour, G.: Time-consistent Shapley value allocation of pollution cost reduction. J. Econ. Dyn. Control. 27, 381–398 (2003)

    Article  MathSciNet  Google Scholar 

  11. Shapley, L.S.: A value for N-person games. In: Kuhn, H., Tucker, A. (eds.) Contributions to the Theory of Games, pp. 307–317. Princeton University Press, Princeton (1953)

    Google Scholar 

  12. Wie, B.W.: A differential game model of Nash equilibrium on a congested traffic network. Networks 23, 557–565 (1993)

    Article  MathSciNet  Google Scholar 

  13. Wie, B.W.: A differential game approach to the dynamic mixed behavior traffic network equilibrium problem. Eur. J. Oper. Res. 83(1), 117–136 (1995)

    Article  Google Scholar 

  14. Yeung, D.W.K., Petrosyan, L.A.: Subgame Consistent Cooperation—A Comprehensive Treatise. Springer (2016)

    Google Scholar 

  15. Yeung, D.W.K.: Subgame consistent Shapley value imputation for cost-saving joint ventures. Math. Game Theory Appl. 2(3), 137–149 (2010)

    MATH  Google Scholar 

  16. Yeung, D.W.K., Petrosyan, L.A.: Dynamic Shapley Value and Dynamic Nash Bargaining. Nova Science, New York (2018)

    MATH  Google Scholar 

  17. Zhang, H., Jiang, L.V., Huang, S., Wang, J., Zhang, Y.: Attack-defense differential game model for network defense strategy selection. IEEE Access (2018). https://doi.org/10.1109/ACCESS.2018.2880214

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by Russian Science Foundation grant Optimal Behavior in Conflict-Controlled Systems (N 17-11-01079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Petrosyan .

Editor information

Editors and Affiliations

Appendix: Proof of Proposition 5.1.

Appendix: Proof of Proposition 5.1.

Using (5.7), we have

$$\begin{aligned} V(S{}_{1}^{} \cup S_{2}^{} ;x_{0}^{} ,T-t_{0}^{} )=\sum _{i\in S_{1}^{} \bigcup S_{2}^{} }^{} \; \sum _{j\in K(i)\cap (S_{1}^{} \cup S_{2}^{} )}^{} \alpha _{ij}^{} (x_{0}^{} ,T-t_{0}^{} ) \end{aligned}$$
$$\begin{aligned} =\sum _{i\in S_{1}^{} }^{} \sum _{j\in K(i)\cap S_{1}^{} }^{} \alpha _{ij}^{} (x_{0}^{} ,T-t_{0}^{} )+ \sum _{i\in S_{2}^{} }^{} \sum _{j\in K(i)\cap S_{2}^{} }^{} \alpha _{ij}^{} (x_{0}^{} ,T-t_{0}^{} ) \end{aligned}$$
$$\begin{aligned} -\sum _{i\in S_{1}^{} \cap S_{2}^{} }^{} \; \sum _{j\in K(i)\cap (S_{1}^{} \cap S_{2}^{} )}^{} \alpha _{ij}^{} (x_{0}^{} ,T-t_{0}^{} ) \end{aligned}$$
$$\begin{aligned} +\sum _{i\in S_{1}^{} }^{} \sum _{j\in K(i)\cap S_{2}^{} }^{} \alpha _{ij}^{} (x_{0}^{} ,T-t_{0}^{} ) +\sum _{i\in S_{2}^{} }^{} \sum _{j\in K(i)\cap S_{1}^{} }^{} \alpha _{ij}^{} (x_{0}^{} ,T-t_{0}^{} ) \end{aligned}$$
$$\begin{aligned} \ge \sum _{i\in S_{1}^{} }^{} \sum _{j\in K(i)\cap S_{1}^{} }^{} \alpha _{ij}^{} (x_{0}^{} ,T-t_{0}^{} )+ \sum _{i\in S_{2}^{} }^{} \sum _{j\in K(i)\cap S_{2}^{} }^{} \alpha _{ij}^{} (x_{0}^{} ,T-t_{0}^{} ) \end{aligned}$$
$$\begin{aligned} -\sum _{i\in S_{1}^{} \cap S_{2}^{} }^{} \; \sum _{j\in K(i)\cap (S_{1}^{} \cap S_{2}^{} )}^{} \alpha _{ij}^{} (x_{0}^{} ,T-t_{0}^{} ) \end{aligned}$$
$$\begin{aligned} =V(S{}_{1}^{} ;x_{0}^{} ,T-t_{0}^{} )+V(S{}_{2}^{} ;x_{0}^{} ,T-t_{0}^{} )-V(S{}_{1}^{} \cap S_{2}^{} ;x_{0}^{} ,T-t_{0}^{} ). \end{aligned}$$
(5.25)

Hence Proposition 5.1 follows.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petrosyan, L., Yeung, D. (2020). Construction of Dynamically Stable Solutions in Differential Network Games. In: Tarasyev, A., Maksimov, V., Filippova, T. (eds) Stability, Control and Differential Games. Lecture Notes in Control and Information Sciences - Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-030-42831-0_5

Download citation

Publish with us

Policies and ethics