Skip to main content

In Silico Study on the Structure of Novel Natural Bioactive Peptides

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2019)

Abstract

Antimicrobial peptides (AMPs) are an abundant and diverse group of molecules produced by many tissues and cell types in a variety of invertebrate, plant and animal species in contact with infectious microorganisms. They play a crucial role as mediators of the primary host defense against microbial invasion. The characteristics, the broad spectrum and largely nonspecific activity of the antimicrobial peptides qualify them as possible candidates for therapeutic alternatives against multi-resistant bacterial strains.

AMPs come in nature in the form of multicomponent secretory fluids that exhibit certain biological activity. For development of biologicals with some predesignated properties separation of the individual components, their purification and activity analysis are needed. In silico experiments are designed to speedup the identification of the active components in these substances, understanding of their structural specifics and biodynamics.

Here we present the first results of a pilot in silico study on the primary structure formation of newly identified in the mucus of molluscs representatives peptides, as a prerequisite for understanding the possible role of complexation for their biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, M.J., et al.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015)

    Article  Google Scholar 

  2. Beutler, B.: Innate immunity: an overview. Mol. Immunol. 40(12), 845–859 (2004)

    Article  Google Scholar 

  3. Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126(1), 014101 (2007)

    Article  Google Scholar 

  4. Cars, O., et al.: Meeting the challenge of antibiotic resistance. BMJ 337, a1438 (2008)

    Article  Google Scholar 

  5. Conti, S., et al.: Structural and functional studies on a proline-rich peptide isolated from swine saliva endowed with antifungal activity towards cryptococcus neoformans. Biochim. Biophys. Acta (BBA) Biomembr. 1828(3), 1066–1074 (2013)

    Article  Google Scholar 

  6. Copolovici, D.M., Langel, K., Eriste, E., Langel, U.: Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8(3), 1972–1994 (2014)

    Article  Google Scholar 

  7. Dalgicdir, C., Globisch, C., Peter, C., Sayar, M.: Tipping the scale from disorder to alpha-helix: folding of amphiphilic peptides in the presence of macroscopic and molecular interfaces. PLoS Comput. Biol. 11(8), e1004328 (2015)

    Article  Google Scholar 

  8. Defer, D., et al.: Antimicrobial peptides in oyster hemolymph: the bacterial connection. Fish Shellfish Immunol. 34(6), 1439–1447 (2013)

    Article  Google Scholar 

  9. Dolashka, P., Dolashki, A., Voelter, W., Beeumen, J.V., Stevanovic, S.: Antimicrobial activity of peptides from the hemolymph of helix lucorum snails. Int. J. Curr. Microbiol. Appl. Sci. 4(4), 1061–1071 (2015)

    Google Scholar 

  10. Dolashka, P., et al.: Antimicrobial proline-rich peptides from the hemolymph of marine snail rapana venosa. Peptides 32(7), 1477–1483 (2011)

    Article  Google Scholar 

  11. Dolashki, A., et al.: Structure and antibacterial activity of isolated peptides from the mucus of garden snail cornu aspersum. Bul. Chem. Commun. 50(Spec. Issue C), 195–200 (2018)

    Google Scholar 

  12. Easton, D.M., Nijnik, A., Mayer, M.L., Hancock, R.E.: Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol. 27(10), 582–590 (2009)

    Article  Google Scholar 

  13. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995)

    Article  Google Scholar 

  14. Fjell, C.D., Hiss, J.A., Hancock, R.E.W., Schneider, G.: Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11, 37–51 (2012)

    Article  Google Scholar 

  15. Gilliland, G., et al.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000). http://www.rcsb.org/

    Article  Google Scholar 

  16. Hess, B.: P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4(1), 116–122 (2008)

    Article  Google Scholar 

  17. Hockney, R., Goel, S., Eastwood, J.: Quiet high-resolution computer models of a plasma. J. Comput. Phys. 14(2), 148–158 (1974)

    Article  Google Scholar 

  18. Högberg, L.D., Heddini, A.: The global need for effective antibiotics: challenges and recent advances. Trends Pharmacol. Sci. 31(11), 509–515 (2010)

    Article  Google Scholar 

  19. Hoskin, D.W., Ramamoorthy, A.: Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta (BBA) Biomembr. 1778(2), 357–375 (2008)

    Article  Google Scholar 

  20. Huang, J., et al.: CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2016)

    Article  Google Scholar 

  21. Kang, H.K., Kim, C., Seo, C.H., Park, Y.: The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J. Microbiol. 55(1), 1–12 (2017)

    Article  Google Scholar 

  22. López-Meza, J.E., Ochoa-Zarzosa, A., Barboza-Corona, J.E., Bideshi, D.K.: Antimicrobial peptides: current and potential applications in biomedical therapies. BioMed Res. Int. 2015, 367243 (2015)

    Article  Google Scholar 

  23. MacKerell, A.D., et al.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102(18), 3586–3616 (1998)

    Article  Google Scholar 

  24. Marinova, R., Petkov, P., Ilieva, N., Lilkova, E., Litov, L.: Molecular dynamics study of the solution behaviour of antimicrobial peptide indolicidin. In: Georgiev, K., Todorov, M., Georgiev, I. (eds.) BGSIAM 2017. SCI, vol. 793, pp. 257–265. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-97277-0_21

    Chapter  Google Scholar 

  25. Parrinello, M., Rahman, A.: Crystal structure and pair potentials: a molecular-dynamics study. Phys. Rev. Lett. 45, 1196 (1980)

    Article  Google Scholar 

  26. Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182 (1981)

    Article  Google Scholar 

  27. Passarini, I., Rossiter, S., Malkinson, J., Zloh, M.: In silico structural evaluation of short cationic antimicrobial peptides. Pharmaceutics 10(3), 72 (2018)

    Article  Google Scholar 

  28. Peschel, A., Sahl, H.G.: The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol. 4, 529–536 (2006)

    Article  Google Scholar 

  29. Reddy, K., Yedery, R., Aranha, C.: Antimicrobial peptides: premises and promises. Int. J. Antimicrob. Agents 24(6), 536–547 (2004)

    Article  Google Scholar 

  30. Velkova, L., Nissimova, A., Dolashki, A., Daskalova, E., Dolashka, P., Topalova, Y.: Glycine-rich peptides from cornu aspersum snail with antibacterial activity. Bul. Chem. Commun. 50(Spec. Issue C), 169–175 (2018)

    Google Scholar 

  31. World Health Organization: Antimicrobial resistance: global report on surveillance (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Bulgarian Ministry of Education and Science (Grant D01-217/30.11.2018) under the National Research Programme “Innovative Low-Toxic Bioactive Systems for Precision Medicine (BioActiveMed)” approved by DCM # 658/14.09.2018 and by the Bulgarian Science Fund (Grant KP-06-OPR 03-10/2018). Computational resources were provided by the HPC Cluster at the Faculty of Physics at Sofia University “St. Kl. Ohridski”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevena Ilieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ilieva, N. et al. (2020). In Silico Study on the Structure of Novel Natural Bioactive Peptides. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2019. Lecture Notes in Computer Science(), vol 11958. Springer, Cham. https://doi.org/10.1007/978-3-030-41032-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41032-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41031-5

  • Online ISBN: 978-3-030-41032-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics