Skip to main content

Non-motor Symptoms in Parkinson’s Disease

  • Chapter
  • First Online:
Mind and Brain

Abstract

Non-motor symptoms are very important for a better quality of life in patients with Parkinson’s disease (PD) but are not enough recognized and treated. The most common non-motor symptoms are pain, autonomic dysfunction, cognitive problems and dementia, depression, fatigue, apathy, sleep disturbances. Some of them precede motor symptoms and can be, also, very important in trying to recognize PD in an early phase. It appears that they are a major cause of disability. In this review the most often non-motor symptoms will be shown, especially cognitive problems and neuropsychiatric features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schapira AH, Tolosa E. Molecular and clinical prodrome of Parkinson disease: implications for treatment. Nat Rev Neurol. 2010;6:309–17. https://doi.org/10.1038/nrneurol.2010.52.

    Article  CAS  PubMed  Google Scholar 

  2. Klingelhoefer L, Samuel M, Chaudhuri KR, Ashkan K. An update of the impact of deep brain stimulation on non- motor symptoms in Parkinson’s disease. J Parkinsons Dis. 2014;4:289–300. https://doi.org/10.3233/JPD-130273.

    Article  PubMed  Google Scholar 

  3. Seppi K, et al. The movement disorder society evidence-based medicine review update: treatments for the non-motor symptoms of Parkinson’s disease. Mov Disord. 2011;26(Suppl. 3):S42–80. https://doi.org/10.1002/mds.23884.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hindle JV. Ageing, neurodegeneration and Parkinson’s disease. Age Ageining. 2010;39(2):156–611. https://doi.org/10.1093/ageing/afp223.

    Article  Google Scholar 

  5. Chaudhuri KR, Healy DG, Schapira AH. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. 2006;5:235–45. https://doi.org/10.1016/S1474-4422(06)70373-8.

    Article  PubMed  Google Scholar 

  6. Aaarslan D, Larsen JP, Tandberg E, Laake K. Predictors of nursing home placement in Parkinson’s disease: a population-based prospective study. J Am Geriatr Soc. 2000;48:938–42. https://doi.org/10.1111/j.1532-5415.2000.tb06891.

    Article  Google Scholar 

  7. Chaudhuri KR, et al. International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinson’s disease: the NMSQuest study. Mov Disord. 2006;21:916–23. https://doi.org/10.1002/mds.20844.

    Article  PubMed  Google Scholar 

  8. Chaudhuri KR, et al. The metric properties of a novel non-motor symptoms scale for Parkinson’s disease: results from an international pilot study. Mov Disord. 2007;22:1901–11. https://doi.org/10.1002/mds.21596.

    Article  PubMed  Google Scholar 

  9. Chaudhuri KR, et al. King’s Parkinson’s disease pain scale, the first scale for pain in PD: an international validation. Mov Disord. 2015;30:1623–31. https://doi.org/10.1002/mdc3.12384.

    Article  PubMed  Google Scholar 

  10. Chaudhuri KR, Martinez-Martin P. Clinical assessment of nocturnal disability in Parkinson’s disease: the Parkinson’s disease Sleep Scale. Neurology. 2004;63:S17–20. https://doi.org/10.1212/wnl.63.8_suppl_3.s17.

    Article  PubMed  Google Scholar 

  11. Grinberg LT, Rueb U, Alho AT, Heinsen H. Brainstem pathology and non-motor symptoms in PD. J Neurol Sci. 2010;289:81–8. https://doi.org/10.1016/j.jns.2009.08.021.

    Article  PubMed  Google Scholar 

  12. Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord. 2008;23:837–44. https://doi.org/10.1002/mds.21956.

    Article  PubMed  Google Scholar 

  13. EmreM, Aarsland D, Brown R, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22(12):1689–1707. https://doi.org/10.1002/mds.21507.

    Article  Google Scholar 

  14. Pigott K, Rick J, Xie SX, et al. Longitudinal study of normal cognition in Parkinson disease. Neurology. 2015;85(15):1276–82. https://doi.org/10.1212/WNL.0000000000002001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cereda E, Cilia R, Klersy C, et al. Dementia in Parkinson’s disease: is male gender a risk factor? Parkinsonism Relat Disord. 2016;26:67–72. https://doi.org/10.1016/j.parkreldis.2016.02.024.

    Article  PubMed  Google Scholar 

  16. Anang JB, Gagnon J-F, Bertrand J-A, et al. Predictors of dementia in Parkinson disease: a prospective cohort study. Neurology. 2014;83(14):1253–60. https://doi.org/10.1212/WNL.0000000000000842.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kempster PA, O’Sullivan SS, Holton JL, Revesz T, Lees AJ. Relationships between age and late progression of Parkinson’s disease: a clinico-pathological study. Brain. 2010;133(Pt 6):1755–62. https://doi.org/10.1093/brain/awq059.

    Article  PubMed  Google Scholar 

  18. Monchi O, Hanganu A, Bellec P. Markers of cognitive decline in PD: The case for heterogeneity. Parkinsonism Relat Disord. 2016;24:8–14. https://doi.org/10.1016/j.parkreldis.2016.01.002.

    Article  PubMed  Google Scholar 

  19. Williams-Gray CH, Evans JR, Goris A, et al. The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the Cam-PaIGN cohort. Brain. 2009;132(Pt 11):2958–69. https://doi.org/10.1093/brain/awp245.

    Article  PubMed  Google Scholar 

  20. Svenningsson P, Westman E, Ballard C, Aarsland D. Cognitive impairment in patients with Parkinson’s disease: diagnosis, biomarkers, and treatment. Lancet Neurol. 2012;11:697–707. https://doi.org/10.1038/nrneurol.2017.27.

    Article  PubMed  Google Scholar 

  21. Litvan I, Goldman JG, Troster AI, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: movement disorder society task force guidelines. Mov Disord. 2012;27:349–56. https://doi.org/10.1002/mds.24893.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Halliday GM, Leverenz JB, Schneider JS, Adler CH. The neurobiological basis of cognitive impairment in Parkinson’s disease. Mov Disord. 2014;29:634–50. https://doi.org/10.1002/mds.25857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Braak H, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211. https://doi.org/10.1016/s0197-4580(02)00065-9.

    Article  PubMed  Google Scholar 

  24. Compta Y, et al. Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? Brain. 2011;134:1493–505. https://doi.org/10.1093/brain/awr031.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Howlett DR, et al. Regional multiple pathology scores are associated with cognitive decline in Lewy body dementias. Brain Pathol. 2015;25:401–8. https://doi.org/10.1111/bpa.12182.

    Article  CAS  PubMed  Google Scholar 

  26. Backstrom DC, et al. Cerebrospinal fluid patterns and the risk of future dementia in early, incident Parkinson disease. JAMA Neurol. 2015;72:1175–82. https://doi.org/10.1001/jamaneurol.2015.1449.

    Article  PubMed  Google Scholar 

  27. Hall S, et al. CSF biomarkers and clinical progression of Parkinson disease. Neurology. 2015;84:57–63. https://doi.org/10.1001/jamaneurol.2015.1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alves G, et al. CSF Aβ42 predicts early-onset dementia in Parkinson disease. Neurology. 2014;82:1784–90. https://doi.org/10.1212/WNL.0000000000000425.

    Article  CAS  PubMed  Google Scholar 

  29. Guella I, et al. α-Synuclein genetic variability: a biomarker for dementia in Parkinson disease. Ann Neurol. 2016;79:991–9. https://doi.org/10.1002/ana.24664.

    Article  CAS  PubMed  Google Scholar 

  30. Alcalay RN, et al. Cognitive performance of GBA mutation carriers with early-onset PD: the CORE-PD study. Neurology. 2012;78:1434–40. https://doi.org/10.1212/WNL.0b013e318253d54b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Williams-Gray CH, et al. Apolipoprotein E genotype as a risk factor for susceptibility to and dementia in Parkinson’s disease. J Neurol. 2009;256:493–8. https://doi.org/10.1007/s00415-009-0119-8.

    Article  CAS  PubMed  Google Scholar 

  32. Morley JF, et al. Genetic influences on cognitive decline in Parkinson’s disease. Mov Disord. 2012;27:512–8. https://doi.org/10.1007/s00415-009-0119-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Seibert TM, Murphy EA, Kaestner EJ, Brewer JB. Interregional correlations in Parkinson disease and Parkinson-related dementia with resting functional MR imaging. Radiology. 2012;263:226–34. https://doi.org/10.1148/radiol.12111280.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rektorova I, Krajcovicova L, Marecek R, Mikl M. Default mode network and extrastriate visual resting state network in patients with Parkinson’s disease dementia. Neurodegener Dis. 2012;10:232–7. https://doi.org/10.1002/gps.4342.

    Article  CAS  PubMed  Google Scholar 

  35. Vander Borght T, et al. Cerebral metabolic differences in Parkinson’s and Alzheimer’s diseases matched for dementia severity. J Nucl Med. 1997;38:797–802.

    CAS  PubMed  Google Scholar 

  36. Gonzalez-Redondo R, et al. Grey matter hypometabolism and atrophy in Parkinson’s disease with cognitive impairment: a two-step process. Brain. 2014;137:2356–67. https://doi.org/10.1093/brain/awu159.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kamei S, Morita A, Serizawa K, Mizutani T, Hirayanagi K. Quantitative EEG analysis of executive dysfunction in Parkinson disease. J Clin Neurophysiol. 2010;27:193–7. https://doi.org/10.1097/WNP.0b013e3181dd4fdb.

    Article  PubMed  Google Scholar 

  38. Klassen BT, et al. Quantitative EEG as a predictive biomarker for Parkinson disease dementia. Neurology. 2011;77:118–24. https://doi.org/10.1212/WNL.0b013e318224af8d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gratwicke J, et al. The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neurosci Biobehav Rev. 2013;37:2676–88. https://doi.org/10.1016/j.neubiorev.2013.09.003.

    Article  PubMed  Google Scholar 

  40. Parsons TD, Rogers SA, Braaten AJ, et al. Cognitive sequelae of subtalamic nucleus deep brain stimulation in Parkinson’s disease: a meta-analysis. Lancet Neurol. 2006;5:578–88. https://doi.org/10.1016/S1474-4422(06)70475-6.

    Article  PubMed  Google Scholar 

  41. Reijnders JS, Ehrt U, Weber WE, Aarsland D, Leentjens AF. A systematic review of prevalence studies of depression in Parkinson’s disease. Mov Disord. 2008;23:183–9. https://doi.org/10.1002/mds.21803.

    Article  PubMed  Google Scholar 

  42. Frisina PG, Borod JC, Foldi NS, Tenenbaum HR. Depression in Parkinson’s disease: health risks, etiology, and treatment options. Neuropsychiatr Dis Treat. 2008;4:81–91.

    PubMed  PubMed Central  Google Scholar 

  43. Rocha FL, Murad MG, Stumpf BP, Hara C, Fuzikawa C. Antidepressants for depression in Parkinson’s disease: systematic review and meta-analysis. J Psychopharmacol. 2013;27:417–23. https://doi.org/10.1177/0269881113478282.

    Article  CAS  PubMed  Google Scholar 

  44. Remy P, Doder M, Lees A, Turjanski N, Brooks D. Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain. 2005;128:1314–22. https://doi.org/10.1093/brain/awh445.

    Article  PubMed  Google Scholar 

  45. Henderson R, Kurlan R, Kersun JM, Como P. Preliminary examination of the comorbidity of anxiety and depression in Parkinson’s disease. J Neuropsychiatry Clin Neurosci. 1992;4(03):257–64. https://doi.org/10.1176/jnp.4.3.257.

    Article  CAS  PubMed  Google Scholar 

  46. Leentjens AF, Dujardin K, Marsh L, Martinez-Martin P, Richard IH, Starkstein SE. Anxiety and motor fluctuations in Parkinson’s disease: a cross-sectional observational study. Parkinsonism Relat Disord. 2012;18(10):1084–8. https://doi.org/10.1016/j.parkreldis.2012.06.007.

    Article  CAS  PubMed  Google Scholar 

  47. Troeung L, Egan SJ, Gasson N. A meta-analysis of randomised placebo-controlled treatment trials for depression and anxiety in Parkinson’s disease. PLoS ONE. 2013;8:e79510. https://doi.org/10.1371/journal.pone.0079510.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Leentjens AF, Koester J, Fruh B, Shephard DT, Barone P, Houben JJ. The effect of pramipexole on mood and motivational symptoms in Parkinson’s disease: a meta-analysis of placebo-controlled studies. Clin Ther. 2009;31:89–98. https://doi.org/10.1016/j.clinthera.2009.01.012.

    Article  CAS  PubMed  Google Scholar 

  49. Barone P, Santangelo G, Morgante L, et al. A randomized clinical trial to evaluate the effects of rasagiline on depressive symptoms in non-demented Parkinson’s disease patients. Eur J Neurol. 2015;22:1184–91. https://doi.org/10.1111/ene.12724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xie C-L, Chen J, Wang X-D, et al. Repetitive transcranial magnetic stimulation (rTMS) for the treatment of depression in Parkinson disease: a meta-analysis of randomized controlled clinical trials. Neurol Sci. 2015;36(10):1751–61. https://doi.org/10.1007/s10072-015-2345-4.

    Article  PubMed  Google Scholar 

  51. Borisovskaya A, Bryson WC, Buchholz J, Samii A, Borson S. Electroconvulsive therapy for depression in Parkinson’s disease: systematic review of evidence and recommendations. Neurodegener Dis Manag. 2016;6(02):161–76. https://doi.org/10.2217/nmt-2016-0002.

    Article  PubMed  Google Scholar 

  52. Xie CL, Wang XD, Chen J, et al. A systematic review and meta-analysis of cognitive behavioral and psychodynamic therapy for depression in Parkinson’s disease patients. Neurol Sci. 2015;36:833–43. https://doi.org/10.1007/s10072-015-2118-0.

    Article  PubMed  Google Scholar 

  53. Deuschl G, Schade-Brittimger C, Krak P, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2006;355:896–908. https://doi.org/10.1056/NEJMoa060281.

    Article  CAS  PubMed  Google Scholar 

  54. Follett KA, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010;362:2077–91. https://doi.org/10.2147/NDT.S105513.

    Article  CAS  PubMed  Google Scholar 

  55. Casteli L, et al. Chronic deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: effect on cognition, mood, anxiety an personality traits. Eur Neurol. 2006;55:136–44. https://doi.org/10.1159/000093213.

    Article  Google Scholar 

  56. Lin CH, Lin JW, Liu YC, Chang CH, Wu RM. Risk of Parkinson’s disease following anxiety disorders: a nationwide population-based cohort study. Eur J Neurol. 2015;22:1280–7. https://doi.org/10.1111/ene.12740.

    Article  PubMed  Google Scholar 

  57. Brown RG, et al. Depression and anxiety related subtypes in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2011;82:803–9.

    Article  Google Scholar 

  58. Dissanayaka NNW, White E, O’Sullivan JD, Marsh R, Silburn PA, Copland DA, Mellick GD, Byrne GJ. Characteristics and Treatment of Anxiety Disorders in Parkinson’s Disease. Mov Disord Clin Pract. 2015;2:155–62.

    Article  Google Scholar 

  59. https://doi.org/10.1136/jnnp.2010.213652.

    Article  Google Scholar 

  60. Dissanayaka NNW, O’Sullivan JD, Silburn PA, Mellick GD. Assessment methods and factors associated with depression in Parkinson’s disease. J Neurol Sci. 2011;310:208–10. https://doi.org/10.1016/j.jad.2011.01.021.

    Article  PubMed  Google Scholar 

  61. Witt K, et al. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: a randomised, multicentre study. Lancet Neurol. 2008;7:605–14. https://doi.org/10.1016/S1474-4422(08)70114-5.

    Article  PubMed  Google Scholar 

  62. Pedersen KF, et al. Apathy in drug-naive patients with incident Parkinson’s disease: the Norwegian Park West study. J Neurol. 2010;257:217–23. https://doi.org/10.1007/s00415-009-5297-x.

    Article  PubMed  Google Scholar 

  63. den Brok MG, van Dalen JW, van Gool WA, Moll van Charante EP, de Bie RM, Richard E. Apathy in Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 2015;30(06): 759–69. https://doi.org/10.1002/mds.26208.

    Article  Google Scholar 

  64. Maillet A, Krack P, Lhommée E, et al. The prominent role of serotonergic degeneration in apathy, anxiety and depression in de novo Parkinson’s disease. Brain. 2016;139(Pt 9):2486–502. https://doi.org/10.1093/brain/aww162.

    Article  PubMed  Google Scholar 

  65. Thobois S, et al. Non-motor dopamine withdrawal syndrome after surgery for Parkinson’s disease: predictors and underlying mesolimbic denervation. Brain. 2010;133:1111–27. https://doi.org/10.1093/brain/awq032.

    Article  PubMed  Google Scholar 

  66. Del SF, Albanese A. Clinical management of pain and fatigue in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(Suppl. 1):S233–6. https://doi.org/10.1016/S1353-8020(11)70071-2.

    Article  Google Scholar 

  67. Hagell P, Brundin L. Towards an understanding of fatigue in Parkinson disease. J Neurol Neurosurg Psychiatry. 2009;80:489–92. https://doi.org/10.1136/jnnp.2008.159772.

    Article  CAS  PubMed  Google Scholar 

  68. Moore TJ, Glenmullen J, Mattison DR. Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs. JAMA Intern Med. 2014;174(12):1930–3. https://doi.org/10.1001/jamainternmed.2014.5262.

    Article  PubMed  Google Scholar 

  69. Evans AH, Lawrence AD, Potts J, Appel S, Lees AJ. Factors influencing susceptibility to compulsive dopaminergic drug use in Parkinson disease. Neurology. 2005;65(10):1570–4. https://doi.org/10.1212/01.wnl.0000184487.72289.f0.

    Article  CAS  PubMed  Google Scholar 

  70. Shotbolt P, et al. Relationships between deep brain stimulation and impulse control disorders in Parkinson’s disease, with a literature review. Parkinsonism Relat. Disord. 2012;18:10–6. https://doi.org/10.1016/j.parkreldis.2011.08.016.

    Article  CAS  PubMed  Google Scholar 

  71. Zahodne LB, Fernandez HH. Pathophysiology and treatment of psychosis in Parkinson’s disease: a review. Drugs Aging. 2008;25:665–82. https://doi.org/10.2165/00002512-200825080-00004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Papapetropoulos S, McCorquodale DS, Gonzalez J, Jean-Gilles L, Mash DC. Cortical and amygdalar Lewy body burden in Parkinson’s disease patients with visual hallucinations. Parkinsonism Relat Disord. 2006;12:253–6. https://doi.org/10.1016/j.parkreldis.2005.10.005.

    Article  PubMed  Google Scholar 

  73. Mundt-Petersen U, Odin P. Infusional therapies, continuous dopaminergic stimulation, and nonmotor symptoms. In: Chaudhuri R, Titova N, editors, Parkinson’s: the hidden face management and the hidden face of related disorders. Elsevier. 2017. p. 1019–44. (International Review of Neurobiology). https://doi.org/10.1016/bs.irn.2017.05.036.

    Google Scholar 

  74. Ray Chaudhuri K, Antonini A, Robieson WZ, Sanchez-Solino O, Bergmann L, Poewe W, et al. Burden of non-motor symptoms in Parkinson’s disease patients predicts improvement in quality of life during treatment with levodopa-carbidopa intestinal gel. Eur J Neurol. 2019;26(4):581–e43. https://doi.org/10.1111/ene.13847.

    Article  CAS  PubMed  Google Scholar 

  75. Dafsari HS, Martinez-Martin P, Rizos A, Trost M, Dos Santos Ghilardi MG, Reddy P, et al. EuroInf 2: subthalamic stimulation, apomorphine, and levodopa infusion in Parkinson’s disease. Mov Disord. 2019;34:353–65. https://doi.org/10.1002/mds.27626.

    Article  CAS  PubMed  Google Scholar 

  76. Titova N, Chaudhuri KR. Non-motor Parkinson disease: new concepts and personalised management. Med J Australia. 2018;208(9):404–9. https://doi.org/10.5694/mja17.00993.

    Article  PubMed  Google Scholar 

  77. Seppi K, Ray Chaudhuri K, Coelho M, Fox SH, Katzenschlager R, Perez Lloret S, Weintraub D, Sampaio C. The collaborators of the Parkinson’s disease update on non-motor symptoms study group on behalf of the movement disorders society evidence-based medicine committee update on treatments for nonmotor symptoms of Parkinson’s disease-an evidence-based medicine review. Mov Disord. 2019;34:180–98. https://doi.org/10.1002/mds.27602.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimira Vuletić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vuletić, V. (2020). Non-motor Symptoms in Parkinson’s Disease. In: Demarin, V. (eds) Mind and Brain. Springer, Cham. https://doi.org/10.1007/978-3-030-38606-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38606-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38605-4

  • Online ISBN: 978-3-030-38606-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics