Skip to main content

Endothelial Cells in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Abstract

Angiogenesis is a critical process required for tumor progression. Newly formed blood vessels provide nutrition and oxygen to the tumor contributing to its growth and development. However, endothelium also plays other functions that promote tumor metastasis. It is involved in intravasation, which allows invasive cancer cells to translocate into the blood vessel lumen. This phenomenon is an important stage for cancer metastasis. Besides direct association with cancer development, endothelial cells are one of the main sources of cancer-associated fibroblasts (CAFs). The heterogeneous group of CAFs is the main inductor of migration and invasion abilities of cancer cells. Therefore, the endothelium is also indirectly responsible for metastasis. Considering the above, the endothelium is one of the important targets of anticancer therapy. In the chapter, we will present mechanisms regulating endothelial function, dependent on cancer and cancer niche cells. We will focus on possibilities of suppressing pro-metastatic endothelial functions, applied in anti-cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478

    Article  CAS  PubMed  Google Scholar 

  2. Aird CW (2007) Phenotypic heterogeneity of the endothelium. I. Structure, function, and mechanisms. Circ Res 100:158–173

    Article  CAS  PubMed  Google Scholar 

  3. Aird CW (2012) Endothelial cell heterogeneity. Cold Spring Harb Perspect Med 2:a006429

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aisagbonhi O, Rai M, Ryzhov S et al (2011) Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis Model Mech 4:469–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Akino T, Hida K, Hida Y et al (2009) Cytogenetic abnormalities of tumour-associated endothelial cells in human malignant tumours. Am J Pathol 175:2657–2667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Al-Mehdi AB, Tozawa K, Fisher AB, Shientag L et al (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumour cells: a new model for metastasis. Nat Med 6:100–102

    Article  CAS  PubMed  Google Scholar 

  7. Anderberg C, Cunha SI, Zhai Z et al (2013) Deficiency for endoglin in tumour vasculature weakens the endothelial barrier to metastatic dissemination. J Exp Med 210:563–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aprile G, Rijavec E, Fontanella C et al (2014) Ramucirumab: preclinical research and clinical development. Onco Targets Ther 7:1997–2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arciniegas E, Frid MG, Douglas IS, Stenmark KR (2007) Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 293:L1–L8

    Article  CAS  PubMed  Google Scholar 

  10. Armstrong EJ, Bischoff J (2004) Heart valve development: endothelial cell signaling and differentiation. Circ Res 95:459–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumour angiogenesis. Microvasc Res 14:53–65

    Article  CAS  PubMed  Google Scholar 

  12. Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901

    Article  CAS  PubMed  Google Scholar 

  13. Bos D, Zhang XH, Nadal C et al (2009) Massague Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brennen WN, Rosen DM, Wang H, Isaacs JT, Denmeade SR (2012) Targeting carcinoma-associated fibroblasts within the tumour stroma with a fibroblast activation protein-activated prodrug. J Natl Cancer Inst 104:1320–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Buckanovich RJ, Sasaroli D, O’Brien-Jenkins A et al (2007) Tumour vascular proteins as biomarkers in ovarian cancer. J Clin Oncol 25:852–861

    Article  CAS  PubMed  Google Scholar 

  16. Burri PH, Hlushchuk R, Djonov V (2004) Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn 31:474–488

    Article  Google Scholar 

  17. Bussolati B, Deambrosis I, Russo S et al (2003) Altered angiogenesis and survival in human tumour-derived endothelial cells. FASEB J 17:1159–1161

    Article  CAS  PubMed  Google Scholar 

  18. Bussolati B, Assenzio B, Deregibus MC, Camussi G (2006) The proangiogenic phenotype of human tumour-derived endothelial cells depends on thrombospondin-1 downregulation via phosphatidylinositol 3-kinase/Akt pathway. J Mol Med 84:852–863

    Article  CAS  PubMed  Google Scholar 

  19. Calon E, Espinet S, Palomo-Ponce DV et al (2012) Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell 22:571–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cerasuolo M, Paris D, Iannotti FA et al (2015) Neuroendocrine transdifferentiation in human prostate cancer cells: an integrated approach. Cancer Res 75:2975–2986

    Article  CAS  PubMed  Google Scholar 

  21. Chang ACY, Fu Y, Garside VC et al (2011) Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Dev Cell 21:288–300

    Article  CAS  PubMed  Google Scholar 

  22. Chen HF, Huang CH, Liu CJ et al (2014) Twist1 induces endothelial differentiation of tumour cells through the Jagged1-KLF4 axis. Nat Commun 22:4697

    Article  CAS  Google Scholar 

  23. Chi JT, Chang HY, Haraldsen G et al (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A 100:10623–10628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ciombor KK, Berlin J (2014) Aflibercept – a decoy VEGF receptor. Curr Oncol Rep 16:368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Cipriani P, Di Benedetto P, Ruscitti P et al (2015) The endothelial mesenchymal transition in systemic sclerosis is induced by endothelin-1 and transforming growth factor-β and may be blocked by Macitentan, a dual endothelin-1 receptor antagonist. J Rheumatol 42:1808–1816

    Article  CAS  PubMed  Google Scholar 

  26. Ciszewski WM, Sobierajska K, Wawro ME et al (2017) The ILK-MMP9-MRTF axis is crucial for EndMT differentiation of endothelial cells in a tumour microenvironment. Biochim Biophys Acta 1864:2283–2296

    Article  CAS  Google Scholar 

  27. Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49:507–521

    Article  CAS  PubMed  Google Scholar 

  28. Cooley BC, Nevado J, Mellad J et al (2014) TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci Transl Med 6:227ra34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Crinò L, Metro G (2014) Therapeutic options targeting angiogenesis in nonsmall cell lung cancer. Eur Respir Rev 23:79–91

    Article  PubMed  Google Scholar 

  30. Cugno M (2012) Inflammation, coagulation, vascular permeability and thrombosis. Curr Vasc Pharmacol 10:631

    Article  CAS  PubMed  Google Scholar 

  31. Dejana E, Orsenigo F (2013) Endothelial adherens junctions at a glance. J Cell Sci 126:2545–2549

    Article  CAS  PubMed  Google Scholar 

  32. Del Galdo F, Lisanti MP, Jimenez SA (2008) Caveolin-1, transforming growth factor-β receptor internalization, and the pathogenesis of systemic sclerosis. Curr Opin Rheumatol 20:713–719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Deregibus MC, Cantaluppi V, Calogero R et al (2007) Endothelial progenitor cell-derived microvesicles activate an angiogenic program in endothelial cells by an horizontal transfer of mRNA. Blood 110:2440–2448

    Article  CAS  PubMed  Google Scholar 

  34. DeRuiter MC, Poelmann RE, VanMunsteren JC et al (1997) Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 80:444–451

    Article  CAS  PubMed  Google Scholar 

  35. Detmar M, Brown LF, Schon MP et al (1998) Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 111:1

    Article  CAS  PubMed  Google Scholar 

  36. Döme B, Hendrix MJ, Paku S et al (2007) Alternative vascularization mechanisms in cancer. Pathology and therapeutic implications. Am J Pathol 170:1–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Dudley AC (2012) Tumour endothelial cells. Cold Spring Harb Perspect Med 2:a006536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ebos JM, Kerbel RS (2011) Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 8:210–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Evrard SM, Lecce L, Michelis KC et al (2016) Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun 7:11853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Folkman J (1971) Tumour angiogenesis: therapeutics implication. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  42. Fu Y, Chang A, Chang L et al (2009) Differential regulation of transforming growth factor β signaling pathways by Notch in human endothelial cells. J Biol Chem 284:19452–19462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Furuya M, Nishiyama M, Kasuya Y et al (2005) Pathophysiology of tumour neovascularization. Vasc Health Risk Manag 1:277–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ganguly H, Yang RS et al (2012) The role of microtubules and their dynamic in cell migration. J Biol Chem 287:43359–43369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gao D, Nolan D, McDonnell K et al (2009) Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumour growth and metastatic progression. Biochim Biophys Acta 1796:33–40

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gasperini P, Espigol-Frigole G, McCormick PJ et al (2012) Kaposi sarcoma herpes virus promotes endothelial-to-mesenchymal transition through notch-dependent signaling. Cancer Res 72(5):1157–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ghajar CM, George SC, Putnam AJ (2008) Matrix metalloproteinase control of capillary morphogenesis. Crit Rev Eukaryot Gene Expr 18:251–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  CAS  PubMed  Google Scholar 

  49. Hanahan D, Weinberg R (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  50. Hida K, Hida Y, Shindoh M (2008) Understanding tumour endothelial cell abnormalities to develop ideal anti-angiogenic therapies. Cancer Sci 99:459–466

    Article  CAS  PubMed  Google Scholar 

  51. Hida K, Maishi N, Annan DA, Hida Y (2018) Contribution of tumour endothelial cells in cancer progression. Int J Mol Sci 19. pii: E1272.

    Google Scholar 

  52. Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26:489–502

    Article  PubMed  PubMed Central  Google Scholar 

  53. Huang TH, Chu TY (2014) Repression of miR-126 and upregulation of adrenomedullin in the stromal endothelium by cancer-stromal cross talks confers angiogenesis of cervical cancer. Oncogene 33:3636–3647

    Article  CAS  PubMed  Google Scholar 

  54. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  CAS  PubMed  Google Scholar 

  55. Junqueira LC, Carneiro J (2005) Basic histology: text and Atlas, 10th edn. McGraw-Hill Medical, New York-Burr Ridge-San Francisco, p 215

    Book  Google Scholar 

  56. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  CAS  PubMed  Google Scholar 

  57. Khella HWZ, Butz H, Ding Q et al (2015) miR-221/222 are involved in response to Sunitinib treatment in metastatic renal cell carcinoma. Mol Ther 23:1748–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Khuon S, Liang L, Dettman L et al (2010) Myosin light chain kinase mediates transcellular intravasation of breast cancer cells through the underlying endothelial cells: a three-dimensional FRET study. J Cell Sci 123:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kienast Y, von Baumgarten L, Fuhrmann M et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16:116–122

    Article  CAS  PubMed  Google Scholar 

  60. Lee T-H, Avraham HK, Jiang S, Avraham S (2003) Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 278:5277–5384

    Article  CAS  PubMed  Google Scholar 

  61. Leong HS, Robertson AE, Stoletov K et al (2014) Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep 8:1558–1570

    Article  CAS  PubMed  Google Scholar 

  62. Li Z, Wermuth PJ, Benn BS et al (2013) Caveolin-1 deficiency induces spontaneous endothelial-to-mesenchymal transition in murine pulmonary endothelial cells in vitro. Am J Pathol 182:325–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li L, Chen L, Zang J et al (2015) C3a and C5a receptor antagonists ameliorate endothelial-myofibroblast transition via the Wnt/β-catenin signaling pathway in diabetic kidney disease. Metabolism 64:597–610

    Article  CAS  PubMed  Google Scholar 

  64. Locy H, de Mey S, de Mey W et al (2018) Immunomodulation of the tumour microenvironment: turn foe into friend. Front Immunol 9:2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Loizzi V, Del Vecchio V, Gargano G et al (2017) Biological pathways involved in tumour angiogenesis and bevacizumab based anti-angiogenic therapy with special references to ovarian cancer. Int J Mol Sci 18:1967

    Article  PubMed Central  CAS  Google Scholar 

  66. Lu C, Bonome T, Li Y et al (2007) Gene alterations identified by expression profiling in tumour-associated endothelial cells from invasive ovarian carcinoma. Cancer Res 67:1757–1768

    Article  CAS  PubMed  Google Scholar 

  67. Maishi N, Ohba Y, Akiyama K et al (2016) Tumour endothelial cells in high metastatic tumours promote metastasis via epigenetic dysregulation of biglycan. Sci Rep 6:28039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mary S, Charrasse S, Meriane M et al (2002) Biogenesis of N-cadherin-dependent cell-cell contacts in living fibroblasts is a microtubule-dependent kinesin-driven mechanism. Mol Biol Cell 13:285–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Masoud GN, Li W (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389

    Article  PubMed  PubMed Central  Google Scholar 

  70. Medici D, Kalluri R (2012) Endothelial mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin Cancer Biol 144:724–732

    Google Scholar 

  71. Medici D, Potenta S, Kalluri R (2011) Transforming growth factor-β2 promotes Snail-mediated endothelial–mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling. Biochem J 437:515–520

    Article  CAS  PubMed  Google Scholar 

  72. Medinger M, Mross K (2010) Clinical trials with anti-angiogenic agents in hematological malignancies. J Angiogenes Res 2:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Michiels C (2003) Endothelial cell functions. J Cell Physiol 196:430–443

    Article  CAS  PubMed  Google Scholar 

  74. Muraki C, Ohga N, Hida Y et al (2011) Cyclooxygenase-2 inhibition causes antiangiogenic effects on tumour endothelial and vascular progenitor cells. Int J Cancer 130:59–70

    Article  PubMed  CAS  Google Scholar 

  75. Nagy JA, Chang SH, Shih SC et al (2010) Heterogeneity of the tumour vasculature. Semin Thromb Hemost 36:321–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nakajima Y, Yamagishi T, Hokari S, Nakamura H (2000) Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor-beta and bone morphogenetic protein. Anat Rec 258:119–127

    Article  CAS  PubMed  Google Scholar 

  77. Nanda A, St Croix B (2004) Tumour endothelial markers: new targets for cancer therapy. Curr Opin Oncol 16:44–49

    Article  CAS  PubMed  Google Scholar 

  78. Nasir A (2019) Angiogenic signaling pathways and anti-angiogenic therapies in human cancer: applications in precision medicine. Predictive Biomarkers Oncol:243–262

    Google Scholar 

  79. Noseda M, McLean G, Niessen K et al (2004) Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. Circ Res 94:910–917

    Article  CAS  PubMed  Google Scholar 

  80. Ohmura-Kakutani H, Akiyama K, Maishi N et al (2014) Identification of tumour endothelial cells with high aldehyde dehydrogenase activity and a highly angiogenic phenotype. PLoS One 9:e113910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Olson EN, Nordheim A (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11:353–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Padua D, Zhang XZ, Wang Q et al (2008) TGFbeta primes breast tumours for lung metastasis seeding through angiopoietin-like 4. Cell 133:66–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Paku S, Paweletz N (1991) First steps of tumour-related angiogenesis. Lab Investig 65:334–346

    CAS  PubMed  Google Scholar 

  84. Pantsulaia I, Ciszewski WM, Niewiarowska J (2016) Senescent endothelial cells: potential modulators of immunosenescence and ageing. Ageing Res Rev 29:13–25

    Article  CAS  PubMed  Google Scholar 

  85. Potts JD, Runyan RB (1989) Epithelial-mesenchymal cell transformation in the embryonic heart can be mediated, in part, by transforming growth factor-beta. Dev Biol 134:392–401

    Article  CAS  PubMed  Google Scholar 

  86. Prager GW, Lackner E-M, Krauth M-T et al (2010) Targeting of VEGF-dependent transendothelial migration of cancer cells by bevacizumab. Mol Oncol 4:150–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Raffaghello L, Vacca A, Pistoia V, Ribatti D (2015) Cancer associated fibroblasts in hematological malignancies. Oncotarget 6:2589–2603

    Article  PubMed  Google Scholar 

  88. Rigamonti N, De Palma M (2013) A role for angiopoietin-2 in organ-specific metastasis. Cell Rep 4:621–623

    Article  CAS  PubMed  Google Scholar 

  89. Rong X, Huang B, Qiu S et al (2016) Tumour-associated macrophages induce vasculogenic mimicry of glioblastoma multiforme through cyclooxygenase-2 activation. Oncotarget 7:83976–83986

    PubMed  PubMed Central  Google Scholar 

  90. Sanchez-Duffhues G, Orlova V, ten Dijke P (2016) In brief: endothelial-to-mesenchymal transition. J Pathol 238(3):378380

    Article  Google Scholar 

  91. Sasahira T, Kurihara M, Bhawal UK et al (2012) Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer. Br J Cancer 107:700–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schully S, Francescone R, Faibish M et al (2012) Transdifferentiation of glioblastoma stem-like cells into mural cells drives vasculogenic mimicry in glioblastomas. J Neurosci 32:12950–12960

    Article  CAS  Google Scholar 

  93. Schumacher D, Strilic B, Sivaraj KK et al (2013) Platelet-derived nucleotides promote tumour-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 24:130–137

    Article  CAS  PubMed  Google Scholar 

  94. Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2(12):1097–1105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. St Croix B, Rago C, Velculescu V et al (2000) Genes expressed in human tumour endothelium. Science 289:1197–1202

    Article  CAS  PubMed  Google Scholar 

  96. Stockmann C, Schadendorf D, Klose R, Helfrich I (2014) The impact of the immune system on tumour: angiogenesis and vascular remodeling. Front Oncol 4:69

    Article  PubMed  PubMed Central  Google Scholar 

  97. Stoletov K, Kato H, Zardouzian E et al (2010) Visualizing extravasation dynamics of metastatic tumour cells. J Cell Sci 123:2332–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Streubel B, Chott A, Huber D et al (2004) Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 351:250–259

    Article  CAS  PubMed  Google Scholar 

  99. Tremblay PL, Huot J, Auger FA (2008) Mechanisms by which E-selectin regulates diapedesis of colon cancer cells under flow conditions. Cancer Res 68:5167–5176

    Article  CAS  PubMed  Google Scholar 

  100. Tsai JH, Yang J (2013) Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 27:2192–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tsuchiya K, Hida K, Hida Y et al (2010) Adrenomedullin antagonist suppresses tumour formation in renal cell carcinoma through inhibitory effects on tumour endothelial cells and endothelial progenitor mobilization. Int J Oncol 36:1379–1386

    PubMed  Google Scholar 

  102. van Meeteren LA, ten Dijke P (2011) Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res 347:177–186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. van Zijl F, Krupitza G, Mikulits W (2011) Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res 728:23–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K (2000) Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 60:203–212

    CAS  PubMed  Google Scholar 

  105. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15:261–271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Wang R, Chadalavada K, Wilshire J et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833

    Article  CAS  PubMed  Google Scholar 

  107. Wang S-H, Chang JS, Hsiao J-R et al (2016) Tumour cell-derived WNT5B modulates in vitro lymphangiogenesis via induction of partial endothelial mesenchymal transition of lymphatic endothelial cells. Oncogene 36:1–13

    Google Scholar 

  108. Wang M, Zhao J, Zhang L et al (2017) Role of tumour microenvironment in tumourigenesis. J Cancer 8:761–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Warren B (1979) The vascular morphology of tumours. In: Peterson H-I (ed) Tumour blood circulation: angiogenesis, vascular morphology and blood flow of experimental and human tumours. CRC Press, Boca Raton, pp 1–47

    Google Scholar 

  110. Wawro ME, Sobierajska K, Ciszewski WM et al (2017) Tubulin beta 3 and 4 are involved in the generation of early fibrotic stages. Cell Signals 38:26–38

    Article  CAS  Google Scholar 

  111. Wawro ME, Chojnacka K, Wieczorek-Szukała K et al (2019) Invasive colon cancer cells induce transdifferentiation of endothelium to cancer-associated fibroblasts through microtubules enriched in tubulin-β3. Int J Mol Sci 20:53

    Article  CAS  Google Scholar 

  112. Weis SM, Cheresh DA (2011) Tumour angiogenesis: molecular pathways and therapeutic targets. Nat Med 17:1359–1370

    Article  CAS  PubMed  Google Scholar 

  113. Wermuth PJ, Li Z, Mendoza FA, Jimenez SA (2016) Stimulation of transforming growth factor-β1-induced endothelial-to-mesenchymal transition and tissue fibrosis by endothelin-1 (ET-1): a novel profibrotic effect of ET-1. PLoS One 11:e0161988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Widyantoro B, Emoto N, Nakayama K et al (2010) Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation 121:2407–2418

    Article  CAS  PubMed  Google Scholar 

  115. Xavier S, Vasko R, Matsumoto K et al (2015) Curtailing endothelial TGF-β signaling is sufficient to reduce endothelial mesenchymal transition and fibrosis in CKD. J Am Soc Nephrol 26:817–829

    Article  CAS  PubMed  Google Scholar 

  116. Xian X, Håkansson J, Ståhlberg A et al (2006) Pericytes limit tumour cell metastasis. J Clin Invest 116:642–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xing F, Saidou J, Watabe K (2010) Cancer associated fibroblasts (CAFs) in tumour microenvironment. Front Biosci 15:166–179

    Article  CAS  PubMed Central  Google Scholar 

  118. Yagi H, Tan W, Dillenburg-Pilla P, Armando S et al (2011) A synthetic biology approach reveals a CXCR4-G13-Rho signaling axis driving transendothelial migration of metastatic breast cancer cells. Sci Signal 4:ra60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Zeisberg M, Kalluri R (2013) Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Physiol Cell Physiol 304(3):C216–C225

    Article  CAS  PubMed  Google Scholar 

  120. Zeisberg EM, Potenta S, Xie L et al (2007) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67:10123–10128

    Article  CAS  PubMed  Google Scholar 

  121. Zervantonakis IK, Hughes-Alford SK, Charest JL et al (2012) Three-dimensional microfluidic model for tumour cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A 109:13515–13520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang B, Halder SK, Zhang S, Datta PK (2009) Targeting transforming growth factor-beta signaling in liver metastasis of colon cancer. Cancer Lett 277:114–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ziyad S, Iruela-Arispe L (2011) Molecular mechanisms of tumour angiogenesis. Genes Cancer 2:1085–1096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Wawro ME, Sobierajska K, Ciszewski WM, Niewiarowska J (2019) Nonsteroidal Anti-Inflammatory Drugs Prevent Vincristine-Dependent Cancer-Associated Fibroblasts Formation. International Journal of Molecular Sciences 20(8):1941

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Sobierajska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sobierajska, K., Ciszewski, W.M., Sacewicz-Hofman, I., Niewiarowska, J. (2020). Endothelial Cells in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1234. Springer, Cham. https://doi.org/10.1007/978-3-030-37184-5_6

Download citation

Publish with us

Policies and ethics