Skip to main content

Thermodynamic Descriptions of the Quaternary Mg–Al–Zn–Sn System and Their Experimental Validation

  • Conference paper
  • First Online:
Magnesium Technology 2020

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

A brief review on the thermodynamic descriptions of all the sub-binary and ternary systems in the Mg–Al–Zn–Sn system available in the literature was first performed, from which the most reliable ones were chosen. After that, thermodynamic description of the quaternary Mg–Al–Zn–Sn system was established via the direct extrapolation of the chosen thermodynamic descriptions of the sub-binary and ternary systems in the framework of CALculation of PHAse Diagrams (CALPHAD) approach. The reliability of the established thermodynamic database was finally validated through a comprehensive comparison of the model -predicted solidified microstructure characteristics and phase fractions in different quaternary alloys with the experimental ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kang YB, Aliravci C, Spencer PJ (2009) Thermodynamic and volumetric databases and software for magnesium alloys. JOM 61(5):75–82.

    CAS  Google Scholar 

  2. Imandoust A, Barrett CD, Al-Samman (2017) A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys. J. Mater. Sci. 52(1):1–29.

    Google Scholar 

  3. Lyu S, Li G, Hu T (2018) A new cast Mg-Y-Sm-Zn-Zr alloy with high hardness. Mater. Lett. 217:79–82.

    CAS  Google Scholar 

  4. Zhang Y, Yang L, Dai J (2014) Effect of Ca and Sr on the compressive creep behavior of Mg-4Al-RE based magnesium alloys. Mater. Design 63:439–445.

    CAS  Google Scholar 

  5. Shi R, Luo AA (2018) Applications of CALPHAD modeling and databases in advanced lightweight metallic materials. Calphad 62:1–17.

    Google Scholar 

  6. Pan H, Ren Y, Fu H (2016) Recent developments in rare-earth free wrought magnesium alloys having high strength: A review. J. Alloys Compd. 663:321–331.

    CAS  Google Scholar 

  7. Park SH, Jung JG, Kim YM (2015) A new high-strength extruded Mg-8Al-4Sn-2Zn alloy. Mater. Lett. 139:35–38.

    CAS  Google Scholar 

  8. Liu C, Chen H, He C (2016) Effects of Zn additions on the microstructure and hardness of Mg-9Al-6Sn alloy. Mater. Charact. 113:214–221.

    CAS  Google Scholar 

  9. Saboungi ML, Hsu CC (1977) Computation of isothermal sections of the Al-H-Mg system. Calphad 1(3):237–251.

    CAS  Google Scholar 

  10. Saunders N (1990) A review and thermodynamic assessment of the Al-Mg and Mg-Li systems. Calphad 14(1):61–70.

    CAS  Google Scholar 

  11. Murray JL (1982) The Al-Mg (aluminum-magnesium) system. J. Phase Equilib. 3(1):60.

    Google Scholar 

  12. Zuo Y, Chang YA (1993) Thermodynamic calculation of the Al-Mg phase diagram. Calphad 17(2):161–174.

    CAS  Google Scholar 

  13. Goel NC, Cahoon JR, Mikkelsen B (1989) An experimental technique for the rapid determination of binary phase diagrams: the Al-Mg system. Metall. Trans. A 20(2):197–203.

    Google Scholar 

  14. Chartrand P, Pelton AD (1994) Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the Al-Mg, Al-Sr, Mg-Sr, and Al-Mg-Sr systems. J. Phase Equilib. 15(6):591–605.

    CAS  Google Scholar 

  15. Liang P, Tarfa T, Robinson JA (1998) Experimental investigation and thermodynamic calculation of the Al-Mg-Zn system. Thermochim. Acta 314(1–2):87-110.

    CAS  Google Scholar 

  16. Su HL, Harmelin M, Donnadieu P (1997) Experimental investigation of the Mg-Al phase diagram from 47 to 63 at.% Al. J. Alloys Compd. 247(1–2):57-65.

    Google Scholar 

  17. Clark JB, Zabdyr L, Moser Z (1988) Phase diagrams of binary magnesium alloys. ASM International, Materials Park, OH, 353–364.

    Google Scholar 

  18. Chadwick RJ (1928) The constitution of the alloys of magnesium and zinc. J. I. Met. 449:285–299.

    Google Scholar 

  19. Hume-Rothery W, Rounsefell ED (1929) The system magnesium-zinc. J. I. Met. 41:119–138.

    Google Scholar 

  20. Park JJ, Wyman LL (1957) Phase relationship in Mg alloys. WADC Technical Report 57–504:Astia Document No. AD142110.

    Google Scholar 

  21. Higashi I, Shiotani N, Uda M (1981) The crystal structure of Mg51Zn20. J. Solid State Chem. 36(2):225–233.

    CAS  Google Scholar 

  22. Agarwal R, Fries SG, Lukas HL (1992) Assessment of the Mg-Zn System. Z. Metallkd. 83(4):216–223.

    CAS  Google Scholar 

  23. Wasiur-Rahman S, Medraj M (2009) Critical assessment and thermodynamic modeling of the binary Mg-Zn, Ca-Zn and ternary Mg-Ca-Zn systems. Intermetallics 17(10):847–864.

    CAS  Google Scholar 

  24. Massalski E, Ohio TB (1990) Metals A. S. M. Binary Alloy Phase Diagrams Park.

    Google Scholar 

  25. Ghosh P, Mezbahul-Islam MD, Medraj M (2012) Critical assessment and thermodynamic modeling of Mg-Zn, Mg-Sn, Sn-Zn and Mg-Sn-Zn systems. Calphad 36:28–43.

    CAS  Google Scholar 

  26. Morishita M, Koyama K, Shikata S (2004) Standard gibbs energy of formation of Mg48Zn52 determined by solution calorimetry and measurement of heat capacity from near absolute zero kelvin. Metall. Mater. Trans. B 35(5):891–895.

    Google Scholar 

  27. Morishita M, Yamamoto H, Shikada S (2006) Thermodynamics of the formation of magnesium-zinc intermetallic compounds in the temperature range from absolute zero to high temperature. Acta Mater. 54(11):3151–3159.

    CAS  Google Scholar 

  28. Morishita M, Koyama K, Shikada S (2005) Calorimetric study of Mg2Zn3. Z. Metallkd. 96(1):32–37.

    CAS  Google Scholar 

  29. Morishita M, Koyama K (2003) Calorimetric study of MgZn2 and Mg2Zn11. Z. Metallkd. 94(9):967–971.

    CAS  Google Scholar 

  30. Meng FG, Wang J, Liu LB (2010) Thermodynamic modeling of the Mg-Sn-Zn ternary system. J. Alloy. Compd. 508(2):570–581.

    CAS  Google Scholar 

  31. Liang P, Seifert HJ, Lukas HL (1998) Thermodynamic modelling of the Cu-Mg-Zn ternary system. Calphad 22(4):527–544.

    CAS  Google Scholar 

  32. Qi HY, Huang GX, Bo H (2012) Experimental investigation and thermodynamic assessment of the Mg-Zn-Gd system focused on Mg-rich corner. J. Mater. Sci. 47(3):1319–1330.

    CAS  Google Scholar 

  33. Nayeb-Hashemi AA, Clark JB (1984) The Mg-Sn (Magnesium-Tin) system. Bull. Alloy Phase Diagrams 5(5):466–476.

    Google Scholar 

  34. Fries SG, Lukas HL (1993) Optimisation of the Mg-Sn system. J. Chim. Phys. 90:181–187.

    CAS  Google Scholar 

  35. Jung IH, Kang DH, Park WJ (2007) Thermodynamic modeling of the Mg-Si-Sn system. Calphad 31(2):192–200.

    CAS  Google Scholar 

  36. Jung IH, Kim J (2010) Thermodynamic modeling of the Mg-Ge-Si, Mg-Ge-Sn, Mg-Pb-Si and Mg-Pb-Sn systems. J. Alloys Compd. 494(1–2):137-147.

    CAS  Google Scholar 

  37. Kang YB, Pelton AD (2010) Modeling short-range ordering in liquids: the Mg-Al-Sn system. Calphad 34(2):180–188.

    CAS  Google Scholar 

  38. Morishita M, Koyama K (2005) Standard entropy of formation of SnMg2 at 298 K. J. Alloys Compd. 398(1–2):12-15.

    CAS  Google Scholar 

  39. Hultgren R, Desai PD, Hawkins DT (1973) Selected Values of the Thermodynamic. Properties of Binary Alloys, American Society for Metals, Metals Park, Ohio.

    Google Scholar 

  40. Murray JL (1983) The Al-Zn (aluminum-zinc) system. Bull. Alloy Phase Diagrams 4(1):55–73.

    Google Scholar 

  41. Mey SA, Effenberg G (1986) A thermodynamic evaluation of the aluminum-zinc system Z. Metallkd. 77(7):449–453.

    Google Scholar 

  42. Mey SA (1993) Re-evaluation of the aluminum-zinc system Z. Metallkd. 84(7):451–455.

    Google Scholar 

  43. Chen SL, Chang YA (1993) A thermodynamic analysis of the Al-Zn system and phase diagram calculation. Calphad 17(2):113–124.

    CAS  Google Scholar 

  44. Mathon M, Jardet K, Aragon E (2000) Al-Ga-Zn system: reassessments of the three binary systems and discussion on possible estimations and on optimisation of the ternary system. Calphad 24(3):253–284.

    CAS  Google Scholar 

  45. Luo Q, Li Q, Zhang JY (2013) Experimental investigation and thermodynamic optimization of the Al-Zn-Ti system in the Al-rich corner. Intermetallics 33:73–80.

    CAS  Google Scholar 

  46. Liang SM, Schmid-Fetzer R (2016) Thermodynamic assessment of the Al-Cu-Zn system, Part III: Al-Cu-Zn ternary system. Calphad 52:21–37.

    CAS  Google Scholar 

  47. Hayes FH (1991) User aspects of phase diagrams: proceedings of the International Conference, held at the Joint Research Centre, Petten, The Netherlands, 25–27th June, 1990. Woodhead Pub Ltd.

    Google Scholar 

  48. Ansara I, Dinsdale AT, Rand MH (1998) COST 507, thermochemical database for light metal alloys, in: European Communities, vol. 2, Belgium.

    Google Scholar 

  49. Flandorfer H, Rechchach M, Elmahfoudi A (2011) Enthalpies of mixing of liquid systems for lead free soldering: Al-Cu-Sn system. J. Chem. Thermodyn. 43(11):1612–1622.

    CAS  Google Scholar 

  50. Cheng T, Tang Y, Zhang L (2019) Update of thermodynamic descriptions of the binary Al-Sn and ternary Mg-Al-Sn systems. Calphad 64:354–363.

    CAS  Google Scholar 

  51. Lee BJ (1996) Thermodynamic assessments of the Sn-Zn and In-Zn binary systems. Calphad 20(4):471–480.

    CAS  Google Scholar 

  52. Ohtani H, Miyashita M, Ishida K (1999) Thermodynamic study of the Sn-Ag-Zn system. J. Jpn. I. Met. 63:685–694.

    CAS  Google Scholar 

  53. Yang C, Chen F, Gierlotka W (2008) Thermodynamic properties and phase equilibria of Sn-Bi-Zn ternary alloys. Mater. Chem. Phys. 112(1):94–103.

    CAS  Google Scholar 

  54. Chen SL (1994): Ph.D. Thesis, University of Wisconsin–Madison, Madison, WI.

    Google Scholar 

  55. Kattner UR, Boettinger WJ (1992) Thermodynamic calculation of the ternary Ti-Al-Nb system. Mat. Sci. Eng. A-Struct. 152(1–2):9-17.

    Google Scholar 

  56. Chen SL, Zuo Y, Liang H (1997) A thermodynamic description for the ternary Al-Mg-Cu system. Metall. Mater. Trans. A 28(2):435–446.

    Google Scholar 

  57. Liang H, Chen SL, Chang YA (1997) A thermodynamic description of the Al-Mg-Zn system. Metall. Mater. Trans. A 28(9):1725–1734.

    Google Scholar 

  58. Doernberg E, Kozlov A, Schmid-Fetzer R (2007) Experimental investigation and thermodynamic calculation of Mg-Al-Sn phase equilibria and solidification microstructures. J. Phase Equilib. Diff. 28(6):523–535.

    CAS  Google Scholar 

  59. Bamberger M (2006) Phase formation in Mg-Sn-Zn alloys-thermodynamic calculations versus experimental verification. J. Mater. Sci. 41(10):2821–2829.

    CAS  Google Scholar 

  60. Jung IH, Park WJ, Ahn S (2006) Thermodynamic modeling of the Mg-Sn-Zn-Al system and its application to mg alloy design. Magnesium Technology 2006:457–461.

    Google Scholar 

  61. Lin KL, Wen LH, Liu TP (1998) The microstructures of the Sn-Zn-Al solder alloys. J. Electron. Mater. 27(3):97–105.

    CAS  Google Scholar 

  62. Sidorov V, Drápala J, Uporov S (2011) Some physical properties of Al-Sn-Zn melts. EPJ Web of Conferences. EDP Sciences 15:01022.

    CAS  Google Scholar 

  63. Smetana B, Zlá S, Kroupa A (2012) Phase transition temperatures of Sn-Zn-Al system and their comparison with calculated phase diagrams. J. Therm. Anal. Calorim. 110(1):369–378.

    CAS  Google Scholar 

  64. Drápala J, Kostiuková G, Smetana B (2015) Thermodynamic and experimental study of tin-zinc-aluminum ternary system. Adv. Sci., Eng. Med. 7(4):291–295.

    Google Scholar 

  65. Knott S, Mikula A (2002) Thermodynamic properties of liquid Al-Sn-Zn alloys: A possible new lead-free solder material. Mater. Trans. 43(8):1868–1872.

    CAS  Google Scholar 

  66. Knott S, Flandorfer H, Mikula A (2005) Calorimetric investigations of the two ternary systems Al-Sn-Zn and Ag-Sn-Zn. Z. Metallkd. 96(1):38–44.

    CAS  Google Scholar 

  67. Cheng T, Zhang LJ (2019) Thermodynamic re-assessment of the Al-Sn-Zn ternary system. J. Min. Metall. Sect. B-Metall. 55(3):439–449.

    Article  Google Scholar 

  68. Dinsdale AT (1991) SGTE data for pure elements. Calphad 15(4):317–425.

    CAS  Google Scholar 

  69. Ansara I, Burton B, Chen Q (2000) Models for composition dependence. Calphad 24(1):19–40.

    CAS  Google Scholar 

  70. Hao D, Hu B, Zhang K (2014) The quaternary Al-Fe-Ni-Si phase equilibria in Al-rich corner: experimental measurement and thermodynamic modeling. J. Mater. Sci. 49(3):1157–1169.

    CAS  Google Scholar 

  71. Muggianu YM, Gambino M, Bros JP (1975) Enthalpies of formation of liquid alloys. J. Chim. Phys. 72(1):83–88.

    CAS  Google Scholar 

  72. Kim BH, Jeon JJ, Park KC (2008) Microstructural characterisation and mechanical properties of Mg-xSn-5Al-1Zn alloys. Int. J. Cast Metals Res. 21(1–4):186-192.

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the National Key Research and Development Program of China (Grant No. 2016YFB0301101), the National Natural Science Foundation of China (Grant No. 51602351), and the Hunan Provincial Science and Technology Program of China (Grant No. 2017RS3002)-Huxiang Youth Talent Plan is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, T., Zhang, L. (2020). Thermodynamic Descriptions of the Quaternary Mg–Al–Zn–Sn System and Their Experimental Validation. In: Jordon, J., Miller, V., Joshi, V., Neelameggham, N. (eds) Magnesium Technology 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36647-6_41

Download citation

Publish with us

Policies and ethics