Skip to main content

Nanoindentation and Cavitation-Induced Fragmentation Study of Primary Al3Zr Intermetallics Formed in Al Alloys

  • Conference paper
  • First Online:
Light Metals 2020

Abstract

Mechanical properties of primary Al3Zr crystals and their in situ fragmentation behaviour under the influence of a single laser induced cavitation bubble have been investigated using nanoindentation and high-speed imaging techniques, respectively. Linear loading of 10 mN was applied to the intermetallics embedded in the Al matrix using a geometrically well-defined diamond nano-indenter to obtain the mechanical properties at room temperature conditions. Primary Al3Zr crystals were also extracted by dissolving the aluminium matrix of an Al-3wt% Zr alloy. The extracted primary crystals were also subjected to cavitation action in deionized water to image the fracture sequence in real time. Fragmentation of the studied intermetallics was recorded at 500,000 frames per second. Results showed that the intermetallic crystals fail by brittle fracture mode most likely due to the repeatedly-generated shock waves from the collapsing bubbles. The results were interpreted in terms of fracture mechanics using the nanoindentation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. G. Eskin, I. Tzanakis, F. Wang, G. S. B. Lebon, T. Subroto, K. Pericleous, and J. Mi, “Fundamental studies of ultrasonic melt processing,” Ultrason. Sonochem., vol. 52, pp. 455–467, Apr. 2019.

    Google Scholar 

  2. F. Wang, I. Tzanakis, D. Eskin, J. Mi, and T. Connolley, “In situ observation of ultrasonic cavitation-induced fragmentation of the primary crystals formed in Al alloys,” Ultrason. Sonochem., vol. 39, no. March, pp. 66–76, 2017.

    Google Scholar 

  3. F. Wang, D. Eskin, T. Connolley, and J. Mi, “Effect of ultrasonic melt treatment on the refinement of primary Al3Ti intermetallic in an Al-0.4Ti alloy,” J. Cryst. Growth, vol. 435, pp. 24–30, 2016.

    Google Scholar 

  4. G. I. Eskin and D. G. Eskin, “Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt,” Ultrason. Sonochem., vol. 10, no. 4–5, pp. 297–301, Jul. 2003.

    Google Scholar 

  5. T. V. Atamanenko, D. G. Eskin, L. Zhang, and L. Katgerman, “Criteria of Grain Refinement Induced by Ultrasonic Melt Treatment of Aluminum Alloys Containing Zr and Ti,” Metall. Mater. Trans. A, vol. 41, no. 8, pp. 2056–2066, Aug. 2010.

    Google Scholar 

  6. G. I. Eskin and D. G. Eskin, “Some control mechanisms of spatial solidification in light alloys,” Zeitschrift für Met., vol. 95, no. 8, pp. 682–690, Aug. 2004.

    Google Scholar 

  7. G. I. Eskin, “Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys,” Ultrason. Sonochem., vol. 8, no. 3, pp. 319–325, Jul. 2001.

    Google Scholar 

  8. G. M. Swallowe, J. E. Field, C. S. Rees, and A. Duckworth, “A photographic study of the effect of ultrasound on solidification,” Acta Metall., vol. 37, no. 3, pp. 961–967, Mar. 1989.

    Google Scholar 

  9. D. Shu, B. Sun, J. Mi, and P. S. Grant, “A High-Speed Imaging and Modeling Study of Dendrite Fragmentation Caused by Ultrasonic Cavitation,” Metall. Mater. Trans. A, vol. 43, no. 10, pp. 3755–3766, Oct. 2012.

    Google Scholar 

  10. R. Chow, R. Blindt, A. Kamp, P. Grocutt, and R. Chivers, “The microscopic visualisation of the sonocrystallisation of ice using a novel ultrasonic cold stage,” Ultrason. Sonochem., vol. 11, no. 3–4, pp. 245–250, May 2004.

    Google Scholar 

  11. R. M. Wagterveld, L. Boels, M. J. Mayer, and G. J. Witkamp, “Visualization of acoustic cavitation effects on suspended calcite crystals,” Ultrason. Sonochem., vol. 18, no. 1, pp. 216–225, Jan. 2011.

    Google Scholar 

  12. B. Wang, D. Tan, T. L. Lee, J. C. Khong, F. Wang, D. Eskin, T. Connolley, K. Fezzaa, and J. Mi, “Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound,” Acta Materialia, vol. 144. pp. 505–515, 2018.

    Google Scholar 

  13. W. W. Xu, I. Tzanakis, P. Srirangam, S. Terzi, W. U. Mirihanage, D. G. Eskin, R. H. Mathiesen, A. P. Horsfield, and P. D. Lee, “In Situ Synchrotron Radiography of Ultrasound Cavitation in a Molten Al-10Cu Alloy,” in TMS 2015 144th Annual Meeting & Exhibition, 2015, pp. 61–66.

    Google Scholar 

  14. F. Wang, D. Eskin, J. Mi, C. Wang, B. Koe, A. King, C. Reinhard, and T. Connolley, “A synchrotron X-radiography study of the fragmentation and refinement of primary intermetallic particles in an Al-35 Cu alloy induced by ultrasonic melt processing,” Acta Materialia, vol. 141. pp. 142–153, 2017.

    Google Scholar 

  15. I. Tzanakis, W. W. Xu, G. S. B. Lebon, D. G. Eskin, K. Pericleous, and P. D. Lee, “In situ synchrotron radiography and spectrum analysis of transient cavitation bubbles in molten aluminium alloy,” Phys. Procedia, vol. 70, no. 0, pp. 841–845, 2015.

    Google Scholar 

  16. W. W. Xu, I. Tzanakis, P. Srirangam, W. U. Mirihanage, D. G. Eskin, A. J. Bodey, and P. D. Lee, “Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al-10Cu melts,” Ultrason. Sonochem., vol. 31, pp. 355–361, 2016.

    Google Scholar 

  17. I. Tzanakis, D. G. Eskin, A. Georgoulas, and D. K. Fytanidis, “Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble,” Ultrason. Sonochem., vol. 21, no. 2, pp. 866–878, 2014.

    Google Scholar 

  18. S. Zhen and G. J. Davies, “Observations of the growth morphology of the intermetallic compound Al3Zr,” J. Cryst. Growth, vol. 64, no. 2, pp. 407–410, Nov. 1983.

    Google Scholar 

  19. M. Conte, G. Mohanty, J. J. Schwiedrzik, J. M. Wheeler, B. Bellaton, J. Michler, and N. X. Randall, “Novel high temperature vacuum nanoindentation system with active surface referencing and non-contact heating for measurements up to 800 °C,” Rev. Sci. Instrum., vol. 90, no. 4, p. 045105, Apr. 2019.

    Google Scholar 

  20. K. Johansen, J. H. Song, K. Johnston, and P. Prentice, “Deconvolution of acoustically detected bubble-collapse shock waves,” Ultrasonics, vol. 73, pp. 144–153, 2017.

    Google Scholar 

  21. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., vol. 7, no. 06, pp. 1564–1583, Jun. 1992.

    Google Scholar 

  22. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am., vol. 100, no. 1, pp. 148–165, Jul. 1996.

    Google Scholar 

  23. D. De Fontaine, “Cluster Approach to Order-Disorder Transformations in Alloys,” Solid State Phys., vol. 47, pp. 33–176, Jan. 1994.

    Google Scholar 

  24. M. Janssen, J. Zuidema, and R. Wanhill, Fracture mechanics. Spon Press, 2004.

    Google Scholar 

Download references

Acknowledgements

The authors are sincerely thankful to the UK Engineering and Physical Sciences Research Council (EPSRC) for the financial support received from the UltraMelt2 project (grant EP/R011044/1, EP/R011095/1 and EP/R011001/1). The authors also acknowledge the help received from Anton Paar, Switzerland for the nanoindentation experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinav Priyadarshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Priyadarshi, A. et al. (2020). Nanoindentation and Cavitation-Induced Fragmentation Study of Primary Al3Zr Intermetallics Formed in Al Alloys. In: Tomsett, A. (eds) Light Metals 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36408-3_23

Download citation

Publish with us

Policies and ethics