Skip to main content

Stressor-Induced Site Control of Quantum Dots for Single-Photon Sources

  • Chapter
  • First Online:
Semiconductor Nanophotonics

Abstract

The strain field of selectively oxidized AlOx current apertures in an AlGaAs/GaAs mesa is utilized to define the nucleation site of InGaAs/GaAs quantum dots. A design is developed that allows for the self-aligned growth of single quantum dots in the center of a circular mesa. Measurements of the strain tensor applying transmission-electron holography yield excellent agreement with the calculated strain field. Single-dot spectroscopy of site-controlled dots proves narrow excitonic linewidth virtually free of spectral diffusion due to quantum-dot growth in a defect-free matrix. Implementation of such dots in an electrically driven pin structure yields single-dot electroluminescence. Single-photon emission with excellent purity is proved for this device using a Hanbury Brown and Twiss setup. The injection efficiency of the initial pin design is affected by a substantial lateral current spreading close to the oxide aperture. Applying 3D carrier-transport simulation a ppn doping profile is developed achieving a substantial improvement of the current injection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We assume that this carrier density corresponds to a capture rate of around 10 ns−1 during the excitation pulse time \( \Delta t_{\text{pulse}} \); see [51] for details.

References

  1. U.W. Pohl, Low-dimensional semiconductors, in Handbook of Materials Data, 2nd edn., ed. by H. Warlimont, W. Martienssen (Springer Nature, Cham, Switzerland, 2018), pp. 1077–1100

    Google Scholar 

  2. D. Bimberg, U.W. Pohl, Quantum dots: promises and accomplishments. Mater. Today 14, 388 (2011)

    Article  Google Scholar 

  3. M. Ciorga, A.S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, Z. Wasilewski, Addition spectrum of a lateral dot from Coulomb and spin-blockade spectroscopy. Phys. Rev. B 61, R16315 (2000)

    Article  ADS  Google Scholar 

  4. A. Forchel, H. Leier, B.E. Maile, R. Germann, Fabrication and optical spectroscopy of ultra small III-V compound semiconductor structures, in Festkörperprobleme/Advances in Solid State Physics, vol. 28, ed. by U. Rössler (Vieweg, Braunschweig, 1988), pp. 99–119

    Google Scholar 

  5. I.N. Stranski, L. Krastanow, Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander. Monatsh. Chem. 71, 351 (1937). (On the theory of oriented deposition of ionic crystals upon each other, in German)

    Article  Google Scholar 

  6. U.W. Pohl, Epitaxy of Semiconductors (Springer, Berlin, 2013)

    Book  Google Scholar 

  7. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E.L. Hu, A. Imamoğlu, Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896 (2007)

    Article  ADS  Google Scholar 

  8. M. Gschrey, R. Schmidt, J.-H. Schulze, A. Strittmatter, S. Rodt, S. Reitzenstein, Resolution and alignment accuracy of low-temperature in situ electron beam lithography for nanophotonic device fabrication. J. Vacuum Sci. Technol. B 33, 021603 (2015)

    Article  Google Scholar 

  9. P. Atkinson, O.G. Schmidt, S.P. Bremner, D.A. Ritchie, Formation and ordering of epitaxial quantum dots. C. R. Phys. 9, 788 (2008)

    Article  ADS  Google Scholar 

  10. C. Schneider, M. Strauß, T. Sünner, A. Huggenberger, D. Wiener, S. Reitzenstein, M. Kamp, S. Höfling, A. Forchel, Lithographic alignment to site-controlled quantum dots for device integration. Appl. Phys. Lett. 92, 183101 (2008)

    Article  ADS  Google Scholar 

  11. V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt, U.W. Pohl, D. Bimberg, R. Steingrüber, Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots. Phys. Rev. B 61, 9944 (2000)

    Article  ADS  Google Scholar 

  12. C. Schneider, A. Huggenberger, T. Sünner, T. Heindel, M. Strauß, S. Göpfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, Single site-controlled In(Ga)As/GaAs quantum dots: growth, properties and device integration. Nanotechnology 20, 434012 (2009)

    Article  ADS  Google Scholar 

  13. O.G. Schmidt (ed.), Lateral Alignment of Epitaxial Quantum Dots (Springer, Berlin, 2007)

    Google Scholar 

  14. V. Holý, G. Springholz, M. Pinczolits, G. Bauer, Strain induced vertical and lateral correlations in quantum dot superlattices. Phys. Rev. Lett. 83, 356 (1999)

    Article  ADS  Google Scholar 

  15. I.L. Krestnikov, M. Straßburg, M. Caesar, A. Hoffmann, U.W. Pohl, D. Bimberg, N.N. Ledentsov, P.S. Kop’ev, Zh.I. Alferov, D. Litvinov, A. Rosenauer, D. Gerthsen, Control of the electronic properties of CdSe submonolayer superlattices via vertical correlation of quantum dots. Phys. Rev. B 60, 8695 (1999)

    Article  ADS  Google Scholar 

  16. X.-D. Wang, N. Liu, C.K. Shih, S. Govindaraju, A.L. Holmes Jr., Spatial correlation-anticorrelation in strain-driven self-assembled InGaAs quantum dots. Appl. Phys. Lett. 85, 1356 (2004)

    Article  ADS  Google Scholar 

  17. G. Springholz, M. Pinczolits, P. Mayer, V. Holy, G. Bauer, H.H. Kang, L. Salamanca-Riba, Tuning of vertical and lateral correlations in self-organized PbSe/Pb1−xEuxTe quantum dot superlattices. Phys. Rev. Lett. 84, 4669 (2000)

    Article  ADS  Google Scholar 

  18. V.A. Haisler, F. Hopfer, R.L. Sellin, A. Lochmann, K. Fleischer, N. Esser, W. Richter, N.N. Ledentsov, D. Bimberg, C. Möller, N. Grote, Micro-Raman studies of vertical-cavity surface-emitting lasers with AlxOy/GaAs distributed Bragg reflectors. Appl. Phys. Lett. 81, 2544 (2002)

    Article  ADS  Google Scholar 

  19. F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N.N. Ledentsov, A.R. Kovsh, V.M. Ustinov, D. Bimberg, Strain engineering of self-organized InAs quantum dots. Phys. Rev. B 64, 085305 (2001)

    Article  ADS  Google Scholar 

  20. J.F. Nye, Physical Properties of Crystals (Claredon Press, Oxford, 1972)

    Google Scholar 

  21. E.O. Kane, Phonon spectra of diamond and zinc-blende semiconductors. Phys. Rev. B 31, 7865 (1985)

    Article  ADS  Google Scholar 

  22. W. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C (Cambridge University Press, Cambridge, 1988)

    MATH  Google Scholar 

  23. I. Vurgaftman, J.R. Meyer, L.R. Ram Mohan, Band parameters for III/V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001)

    Article  ADS  Google Scholar 

  24. B. Zhou, B.C. Prorok, A new paradigm in thin film indentation. J. Mater. Res. 25, 1671 (2010)

    Article  ADS  Google Scholar 

  25. F. Kießling, T. Niermann, M. Lehmann, J.-H. Schulze, A. Strittmatter, A. Schliwa, U.W. Pohl, Strain field of a buried oxide aperture. Phys. Rev. B 91, 075306 (2015)

    Article  ADS  Google Scholar 

  26. A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T.D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. Ostapenko, S. Rodt, W. Unrau, U.W. Pohl, A. Hoffmann, D. Bimberg, V. Haisler, Site-controlled quantum dot growth on buried oxide stressor layers. Phys. Status Solidi A 209, 2411 (2012)

    Article  ADS  Google Scholar 

  27. K.D. Choquette, K.M. Geib, C.I.H. Ashby, R.D. Twesten, O. Blum, H.Q. Hou, D.M. Follstaedt, B.E. Hammons, D. Mathes, R. Hull, Advances in selective wet oxidation of AlGaAs alloys. IEEE J. Sel. Top. Quantum Electron. 3, 916 (1997)

    Article  ADS  Google Scholar 

  28. A. Strittmatter, A. Schliwa, J.H. Schulze, T.D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. Ostapenko, S. Rodt, W. Unrau, U.W. Pohl, V. Haisler, A. Hoffmann, D. Bimberg, Lateral positioning of InGaAs quantum dots using a buried stressor. Appl. Phys. Lett. 100, 093111 (2012)

    Article  ADS  Google Scholar 

  29. M. Strauß, A. Kaganskiy, R. Voigt, P. Schnauber, J.-H. Schulze, S. Rodt, A. Strittmatter, S. Reitzenstein, Resonance fluorescence of a site-controlled quantum dot realized by the buried-stressor growth technique. Appl. Phys. Lett. 110, 111101 (2017)

    Article  ADS  Google Scholar 

  30. O. Hitzemann, E. Stock, A. Strittmatter, A. Schliwa, J.-H. Schulze, T.D. Germann, D. Quandt, W. Unrau, U.W. Pohl, A. Hoffmann, D. Bimberg, V. Haisler, Optical excitation channels of a single site-controlled quantum dot. Paper HL 74.8 Presented at Spring Meeting of the German Physical Society, University of Regensburg, Regensburg, 10–15 Mar 2013

    Google Scholar 

  31. M. De Graef, Introduction to Conventional Transmission Electron Microscopy (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  32. M. Hÿtch, E. Snoeck, R. Kilaas, Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131 (1998)

    Article  Google Scholar 

  33. A. Lubk, E. Javon, N. Cherkashin, S. Reboh, C. Gatel, M. Hÿtch, Dynamic scattering theory for dark-field electron holography of 3D strain fields. Ultramicroscopy 42, 136 (2014)

    Google Scholar 

  34. M. Hÿtch, F. Houdellier, F. Hüe, E. Snoeck, Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453, 1086 (2008)

    Article  ADS  Google Scholar 

  35. K. Harada, A. Tonomura, Y. Togawa, T. Akashi, T. Matsuda, Double-biprism electron interferometry. Appl. Phys. Lett. 84, 3229 (2004)

    Article  ADS  Google Scholar 

  36. F. Genz, T. Niermann, B. Buijsse, B. Freitag, M. Lehmann, Advanced double-biprism holography with atomic resolution. Ultramicroscopy 147, 33 (2014)

    Article  Google Scholar 

  37. T. Niermann, M. Lehmann, Averaging scheme for atomic resolution off-axis electron holograms. Micron 63, 28 (2014)

    Article  Google Scholar 

  38. D. Richter, R. Hafenbrak, K.D. Jöns, W.-M. Schulz, M. Eichfelder, M. Heldmaier, R. Roßbach, M. Jetter, P. Michler, Low density MOVPE grown InGaAs QDs exhibiting ultra-narrow single exciton linewidths. Nanotechnology 21, 125606 (2010)

    Article  ADS  Google Scholar 

  39. W. Unrau, D. Quandt, J.-H. Schulze, T. Heindel, T.D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, U.W. Pohl, D. Bimberg, Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection. Appl. Phys. Lett. 101, 211119 (2012)

    Article  ADS  Google Scholar 

  40. S. Rodt, A. Schliwa, K. Pötschke, F. Guffarth, D. Bimberg, Correlation of structural and few-particle properties of self-organized InAs/GaAs quantum dots. Phys. Rev. B 71, 155325 (2005)

    Article  ADS  Google Scholar 

  41. C. Taylor, E. Marega, E.A. Stach, G. Salamo, L. Hussey, M. Munoz, A. Malshe, Directed self-assembly of quantum structures by nanomechanical stamping using probe tips. Nanotechnology 19, 015301 (2008)

    Article  ADS  Google Scholar 

  42. J. Skiba-Szymanska, A. Jamil, I. Farrer, M.B. Ward, C.A. Nicoll, D.J.P. Ellis, J.P. Griffiths, D. Anderson, G.A.C. Jones, D.A. Ritchie, A.J. Shields, Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs (100) substrates. Nanotechnology 22, 065302 (2011)

    Article  ADS  Google Scholar 

  43. M. Felici, P. Gallo, A. Mohan, B. Dwir, A. Rudra, E. Kapon, Site-controlled InGaAs quantum dots with tunable emission energy. Small 5, 938 (2009)

    Article  Google Scholar 

  44. A. Huggenberger, S. Heckelmann, C. Schneider, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, Narrow spectral linewidth from single site-controlled In (Ga) As quantum dots with high uniformity. Appl. Phys. Lett. 98, 131104 (2011)

    Article  ADS  Google Scholar 

  45. M. Mehta, D. Reuter, A. Melnikov, A.D. Wieck, S.M. de Vasconcellos, T. Baumgarten, A. Zrenner, C. Meier, Intentionally positioned self-assembled InAs quantum dots in an electroluminescent p–i–n junction diode. Phys. E 42, 2749 (2010)

    Article  Google Scholar 

  46. C. Schneider, T. Heindel, A. Huggenberger, T.A. Niederstrasser, S. Reitzenstein, A. Forchel, S. Höfling, M. Kamp, Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot. Appl. Phys. Lett. 100, 091108 (2012)

    Article  ADS  Google Scholar 

  47. K.D. Jöns, P. Atkinson, M. Müller, M. Heldmaier, S.M. Ulrich, O.G. Schmidt, P. Michler, Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots. Nano Lett. 13, 126 (2013)

    Article  ADS  Google Scholar 

  48. R.B. Patel, A.J. Bennett, K. Cooper, P. Atkinson, C.A. Nicoll, D.A. Ritchie, A.J. Shields, Quantum interference of electrically generated single photons from a quantum dot. Nanotechnology 21, 274011 (2010)

    Article  ADS  Google Scholar 

  49. F. Heinrichsdorff, M. Grundmann, O. Stier, A. Krost, D. Bimberg, Influence of In/Ga intermixing on the optical properties of InGaAs/GaAs quantum dots. J. Crystal Growth 195, 540 (1998)

    Article  ADS  Google Scholar 

  50. R. Michalzik, VCSEL fundamentals, in VCSELs—Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, ed. by R. Michalzik. Springer Series in Optical Sciences, vol. 166 (Springer, Berlin, Heidelberg, 2013), pp. 19–75

    Google Scholar 

  51. M. Kantner, U. Bandelow, T. Koprucki, J.-H. Schulze, A. Strittmatter, H.-J. Wünsche, Efficient current injection into single quantum dots through oxide-confined p-n-diodes. IEEE Trans. Electron. Dev. 63, 2036 (2016)

    Article  ADS  Google Scholar 

  52. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, Vienna, 1984)

    Book  Google Scholar 

  53. W.W. van Roosbroeck, Theory of the flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J. 29, 560 (1950)

    Article  MATH  Google Scholar 

  54. P. Farrell, N. Rotundo, D.H. Doan, M. Kantner, J. Fuhrmann, T. Koprucki, Drift-diffusion models, in Handbook of Optoelectronic Device Modeling and Simulation, ed. by J. Piprek. Lasers, Modulators, Photodetectors, Solar Cells, and Numerical Methods, vol. 2 (CRC Press, Taylor & Francis, Boca Raton, 2017), pp. 733–771

    Google Scholar 

  55. M. Kantner, T. Koprucki, Numerical simulation of carrier transport in semiconductor devices at cryogenic temperatures. Opt. Quantum Electron. 48, 543 (2016)

    Article  Google Scholar 

  56. A. Wilms, P. Mathé, F. Schulze, T. Koprucki, A. Knorr, U. Bandelow, Influence of the carrier reservoir dimensionality on electron-electron scattering in quantum dot materials. Phys. Rev. B 88, 235421 (2013)

    Article  ADS  Google Scholar 

  57. T.R. Nielsen, P. Gartner, F. Jahnke, Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers. Phys. Rev. B 69, 235314 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Jan-Hindrik Schulze for growing samples and Felix Kießling for structural characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. W. Pohl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pohl, U.W. et al. (2020). Stressor-Induced Site Control of Quantum Dots for Single-Photon Sources. In: Kneissl, M., Knorr, A., Reitzenstein, S., Hoffmann, A. (eds) Semiconductor Nanophotonics. Springer Series in Solid-State Sciences, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-35656-9_3

Download citation

Publish with us

Policies and ethics