Skip to main content

Diabetes Detection Using ECG Signals: An Overview

  • Chapter
  • First Online:
Deep Learning Techniques for Biomedical and Health Informatics

Part of the book series: Studies in Big Data ((SBD,volume 68))

Abstract

Diabetes Mellitus (or diabetes) is a clinical condition marked by hyperglycaemia and it affects a lot of people worldwide. Hyperglycaemia is the condition where high amount of glucose is present in the blood along with lack of insulin. The incidence of diabetes affected people is increasing every year. Diabetes cannot be cured. It can only be managed. If, not managed properly, it can lead to great complications which can be fatal. Therefore, timely diagnosis of diabetes is of great importance. In this chapter, we see the effect of diabetes on cardiac health and how heart rate variability (HRV) signals give an indication about the existence and acuteness of the diabetes by measuring the diabetes-induced cardiac impairments. Extracting useful information from the nonstationary and nonlinear HRV signal is extremely challenging. We review that deep learning methods do that extricating task very effectively so as to identify the correlation between the presence of diabetes and HRV signal variations in the most accurate and fast manner. We discuss several deep learning architectures which can be effectively used for HRV signal analysis for the purpose of detection of diabetes. It can be seen that deep learning methods is the state of art to understand and analyse the fine changes from the normal in the case of HRV signals. Deep learning networks can be developed to a scalable framework which can process large amount of data in a distributed manner. This can be followed by application of distributed deep learning algorithm for learning the patterns so as to do even correct predictions about future progress of the disease. Presently, there is no publicly available data of normal and diabetic HRV. If large amount of private data of diabetic HRV and normal HRV can be made available, then deep learning networks have the capability to give the authorities different kind of statistics from the stored data and projections of future prognosis of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ralston, S.H., Penman, I.D., Strachan, M.W., Hobson, R.P.: Davidson’s Principles and Practice of Medicine, 23rd edn. Elsevier

    Google Scholar 

  2. Viktor, S., Steven, I., Marina, D.I., Aleksander, N., Vojislava, M.: Impact of diabetes on heart rate variability and left ventricular function in patients after myocardial infarction. Facta Univ. Ser.: Med. Biol. 12(3), 130–134 (2005)

    Google Scholar 

  3. Di Carli, M.F., Janisse, J., Grunberger, G., Ager, J.: Role chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J. Am. Coll. Cardiol. 41, 1387–1393 (2003)

    Article  Google Scholar 

  4. Gresele, P., Guglielmini, G., Deangelis, M., et al.: Acute short-term hyperglycemia enhances heart stress-induced platelet activation in patients with type 2 diabetes mellitus. J. Am. Coll. Cardiol. 41, 1013–1020 (2003)

    Article  Google Scholar 

  5. Pfiefer, M.A., Cook, D., Brodsky, J., Tice, D., Reenan, A., Swedine, S., et al.: Quantitative evaluation of cardiac parasympathetic activity in normal and diabetic man. Diabetes 339–345 (1982)

    Google Scholar 

  6. Sawicki, P.T., Dahne, R., Bender, R., Berger, M.: Prolonged QT interval as a predictor of mortality in diabetic nephropathy. Diabetologia 39(1), 77–81 (1996)

    Google Scholar 

  7. Okin, P.M., Devereaux, R.B., Howard, B.V., Welty, T.K.: Assessment of QT interval and QT dispersion for prediction of all-cause mortality and cardiovascular mortality in American Indians: the Strong Heart Study. Circulation 101, 61–66 (2000)

    Article  Google Scholar 

  8. Barrett, K.E., Barman, M.S., Boitano, S., Brooks, H.: Ganong’s Review of Medical Physiology. McGraw-Hill Companies

    Google Scholar 

  9. Stern, S., Sclarowsky, S.: The ECG in diabetes mellitus. Am. Heart Assoc. (AHA) J. (2009)

    Google Scholar 

  10. Sokolow, M., Mcllroy, M.B., Chiethin, M.D.: Clinical Cardiology. VLANGE Medical Book (1990)

    Google Scholar 

  11. Constant, I., Laude, D., Murat, I., Elghozi, J.L.: Pulse rate variability is not a surrogate for heart rate variability. Clin. Sci. 97, 391–397 (1999)

    Article  Google Scholar 

  12. Kleiger, R.E., Bigger, J.T., Bosner, M.S., Chung, M.K., Cook, J.R., Rolnitzky, L.M., et al.: Stability over time of variables measuring heart rate variability in normal subjects. Am. J. Cardiol. 68, 626–630 (1991)

    Article  Google Scholar 

  13. Ge, D., Srinivasan, N., Krishnan, S.M.: Cardiac arrhythmia classification using autoregressive modeling. Biomed. Eng. Online 1(1), 5 (2002)

    Article  Google Scholar 

  14. Akselrod, S., Gordon, D., Madwed, J.B., Snidman, N.C., Shannon, D.C., Cohen, R.J.: Hemodynamic regulation: investigation by spectral analysis. Am. J. Physiol. 249(4 Pt 2), H867–H875 (1985)

    Article  Google Scholar 

  15. Gamero, L.G., Vila, J., Palacios, F.: Wavelet transform analysis of heart rate variability during myocardial ischaemia. Med. Biol. Eng. Comput. 40, 72–78 (2002)

    Article  Google Scholar 

  16. Peng, C.K., Havlin, S., Hausdorf, J.M., Mietus, J.E., Stanley, H.E., Goldberger, A.L.: Fractal mechanisms and heart rate dynamics. J. Electrocardiol. 28(Suppl), 59–64 (1996)

    Google Scholar 

  17. Grassberger, P., Procassia, I.: Measuring the strangeness of strange attractors. Phys. D 9, 189–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. U.S.A. 88, 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Eckmann, J.P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems. Europhys. Lett. 4, 973–977 (1987)

    Article  Google Scholar 

  20. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press. http://www.deeplearningbook.org (2016)

  21. Poultney, C., Chopra, S., Cun, Y.L., et al.: Efficient learning of sparse representations with an energy-based model. In: Advances in Neural Information Processing Systems, pp. 1137–1144 (2006)

    Google Scholar 

  22. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103. ACM (2008)

    Google Scholar 

  24. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  25. Goldberger, A.L., West, B.J.: Application of non-linear dynamics to clinical cardiology. Ann. N. Y. Acad. Sci. 504, 195–213 (1987)

    Article  Google Scholar 

  26. Rosenstien, M., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D 65, 117–134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kobayashi, M., Musha, T.: 1/f fluctuation of heart beat period. IEEE Trans. Biomed. Eng. 29, 456–457 (1982)

    Article  Google Scholar 

  28. Acharya, U.R., Kannathal, N., Krishan, S.M.: Comprehensive analysis of cardiac health using heart rate signals. Physiol. Meas. J. 25, 1130–1151 (2004)

    Google Scholar 

  29. Acharya, U.R., Paul Joseph, K., Kannathal, N., Lim, C.M., Suri, J.S.: Heart rate variability: a review. Med. Biol. Eng. Comput. 44(12), 1031–1051 (2006)

    Article  Google Scholar 

  30. Chua, K.C., Chandran, V., Acharya, U.R., Lim, C.M.: Computer-based analysis of cardiac state using entropies, recurrence plots and Poincare geometry. J. Med. Eng. Technol. 2(4), 263–272 (2008)

    Article  Google Scholar 

  31. Acharya, U.R., Suri, J.S., Spaan, J.A.E., Krisnan, S.M.: Advances in Cardiac Signal Processing. Springer Verlag GmbH Berlin Heidelberg (2007)

    Google Scholar 

  32. Wheeler, T., Watkins, P.J.: Cardiac denervation in diabetes. Br. Med. J. 4, 584–586 (1973)

    Article  Google Scholar 

  33. Singh, J.P., Larson, M.G., O’Donell, C.J., Wilson, P.F., Tsuji, H., Lyod-Jones, D.M., Levy, D.: Association of hyperglycemia with reduced heart rate variability: the Framingham heart study. Am. J. Cardiol. 86, 309–312 (2000)

    Article  Google Scholar 

  34. Villareal, R.P., Liu, B.C., Massumi, A.: Heart rate variability and cardiovascular mortality. Curr. Atheroscler. Rep. 4(2), 120–127 (2002)

    Article  Google Scholar 

  35. Stamler, J., Vaccaro, D., Neaton, J.D., Wentworth, D.: Diabetes, other risk factors, and 12-year cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care 16, 434–444 (1993)

    Article  Google Scholar 

  36. Coutinho, M., Gerstein, H.C., Wang, Y., Yusuf, S.: The relationship between glucose and incidence cardiovascular events: a meta-regression analysis of published data from 20 studies of 95783 individuals followed for 12.4 years. Diabetes Care 22, 233–240 (1999)

    Article  Google Scholar 

  37. Melchior, T., Kober, L., Madsen, C.R., et al.: Accelerating impact of diabetes mellitus on mortality in the years following an acute myocardial infarction. Eur. Heart J. 20, 973–978 (1999)

    Article  Google Scholar 

  38. Braunwald, E., Antman, E., Beasley, J.W., et al.: ACC/AHA guidelines for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 36, 970–1062 (2000)

    Article  Google Scholar 

  39. Khandoker, A.H., Jelinek, H.F., Palaniswami, M.L: Identifying diabetic patients with cardiac autonomic neuropathy by heart rate complexity analysis. Biomed. Eng. Online 8, 1–12 (2009)

    Article  Google Scholar 

  40. Kirvela, M., Salmela, K., et al.: Heart rate variability in diabetic and non-diabetic renal transplant patients. Acta Anaesthesiol. Scand. 40(7), 804–808 (1996)

    Article  Google Scholar 

  41. Mackay, J.D.: Respiratory sinus arrhythmia in diabetic neuropathy. Diabetologia 24(4), 253–256 (1983). https://doi.org/10.1007/BF00282709

  42. Jelinek, H.F., Flynn, A., Warner, P.: Automated assessment of cardiovascular disease associated with diabetes in rural and remote health practice. In: The National SARRAH Conference, pp. 1–7 (2004)

    Google Scholar 

  43. Awdah, A., Nabil, A., Ahmad, S., Reem, Q., Khidir, A.: Time-domain analysis of heart rate variability in diabetic patients with and without autonomic neuropathy. Ann. Saudi Med. 22, 5–6 (2002)

    Google Scholar 

  44. Chemla, D., Young, J., Badilini, F., Maison, B.P., Affres, H., Lecarpentier, Y., Chanson, P.: Comparison of fast Fourier transform and autoregressive spectral analysis for the study of heart rate variability in diabetic patients. Int. J. Cardiol. 104(3), 307–313 (2005)

    Article  Google Scholar 

  45. Schroeder, E.B., Chambless, L.E., Liao, D., Prineas, R.J., Evans, G.W., Rosamond, W.D., et al.: Diabetes, glucose, insulin, and heart rate variability: the Atherosclerosis Risk in Communities (ARIC) study. Diabetes Care 28(3), 668–674 (2005)

    Article  Google Scholar 

  46. Seyd, P.T.A., Ahamed, V.T., Jacob, J., Joseph, P.: Time and frequency domain analysis of heart rate variability and their correlations in diabetes mellitus. World Acad. Sci. Eng. Technol. 2(3) (2008)

    Google Scholar 

  47. Trunkvalterova, Z., Javorka, M., Tonhajzerova, I., Javorkova, J., Lazarova, Z., Javorka, K., Baumert, M.: Reduced short-term complexity of heart rate and blood pressure dynamics in patients with diabetes mellitus type 1: multiscale entropy analysis. J. Physiol. Meas. 29(7) (2008)

    Article  Google Scholar 

  48. Faust, O., Acharya, U.R., Molinari, F., Chattopadhyay, S., Tamura, T.: Linear and non-linear analysis of cardiac health in diabetic subjects. Biomed. Signal Process. Control 7(3), 295–302 (2012)

    Article  Google Scholar 

  49. Jian, L.W., Lim, T.C.: Automated detection of diabetes by means of higher order spectral features obtained from heart rate signals. J. Med. Imaging Health Inform. 3, 440–447 (2013)

    Article  Google Scholar 

  50. Acharya, U.R., Faust, O., VinithaSree, S., Ghista, D.N., Dua, S., Joseph, P., Thajudin, A.V.I., Janarthanan, N., Tamura, T.: An integrated diabetic index using heart rate variability signal features for diagnosis of diabetes. Comput. Methods Biomech. Biomed. Eng. 16, 222–234 (2013)

    Article  Google Scholar 

  51. Swapna, G., Acharya, U.R., VinithaSree, S., Suri, J.S.: Automated detection of diabetes using higher order spectral features extracted from heart rate signals. Intell. Data Anal. 17(2), 309–326 (2013)

    Article  Google Scholar 

  52. Acharya, U.R., Faust, O., Kadri, N.A., Suri, J.S., Yu, W.: Automated identification of normal and diabetes heart rate signals using nonlinear measures. Comput. Biol. Med. 43(10), 1523–1529 (2013)

    Article  Google Scholar 

  53. Acharya, U.R., Vidya, S., Ghista, D.N., Lim, W.J.E., Molinari, F., Sankaranarayanan, M.: Computer-aided diagnosis of diabetic subjects by HRV signals using discrete wavelet transform method. Knowl.-Based Syst. 42, 4567–4581 (2015)

    Google Scholar 

  54. Pachori, R.B., Kumar, M., Avinash, P., Shashank, K., Acharya, U.R.: An improved online paradigm for screening of diabetic patients using RR-interval signals. J. Mech. Med. Biol. 16, 1640003 (2016)

    Article  Google Scholar 

  55. Flynn, A.C., Jelinek, A.F., Smith, M.: Heart rate variability analysis: a useful assessment tool for diabetes associated cardiac dysfunction in rural and remote areas. Aust. J. Rural Health 13(2), 77–82 (2005)

    Article  Google Scholar 

  56. Acharya, U.R., Fujita, H., Oh, S.L., Adam, M., Tan, J.H., Chua, C.K.: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network. Knowl.-Based Syst. 132, 62–71 (2017)

    Article  Google Scholar 

  57. Acharya, U.R., Fujita, H., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M.: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf. Sci. 415, 190–198 (2017)

    Article  Google Scholar 

  58. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M., Gertych, A., Tan, R.S.: A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 89, 389–396 (2017)

    Article  Google Scholar 

  59. Sujadevi, V.G., Soman, K.P., Vinayakumar, R.: Real-time detection of atrial fibrillation from short time single lead ECG traces using recurrent neural networks. In: The International Symposium on Intelligent Systems Technologies and Applications, pp. 212–221, Sept 2017. Springer

    Google Scholar 

  60. Swapna, G., Soman, K.P., Vinayakumar, R.: Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals. Procedia Comput. Sci. 132, 1253–1262 (2018)

    Article  Google Scholar 

  61. Swapna, G., Vinayakumar, R., Soman, K.P.: Diabetes detection using deep learning algorithms. ICT Express 4, 243–246 (2018)

    Article  Google Scholar 

  62. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine learning. OSDI 16, 265–283 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Swapna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Swapna, G., Soman, K.P., Vinayakumar, R. (2020). Diabetes Detection Using ECG Signals: An Overview. In: Dash, S., Acharya, B., Mittal, M., Abraham, A., Kelemen, A. (eds) Deep Learning Techniques for Biomedical and Health Informatics. Studies in Big Data, vol 68. Springer, Cham. https://doi.org/10.1007/978-3-030-33966-1_14

Download citation

Publish with us

Policies and ethics