Skip to main content

Variational AutoEncoder for Regression: Application to Brain Aging Analysis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11765))

Abstract

While unsupervised variational autoencoders (VAE) have become a powerful tool in neuroimage analysis, their application to supervised learning is under-explored. We aim to close this gap by proposing a unified probabilistic model for learning the latent space of imaging data and performing supervised regression. Based on recent advances in learning disentangled representations, the novel generative process explicitly models the conditional distribution of latent representations with respect to the regression target variable. Performing a variational inference procedure on this model leads to joint regularization between the VAE and a neural-network regressor. In predicting the age of 245 subjects from their structural Magnetic Resonance (MR) images, our model is more accurate than state-of-the-art methods when applied to either region-of-interest (ROI) measurements or raw 3D volume images. More importantly, unlike simple feed-forward neural-networks, disentanglement of age in latent representations allows for intuitive interpretation of the structural developmental patterns of the human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When \(\varvec{x}\) is binary, a Bernoulli distribution can define \(p(\varvec{x}|\varvec{z}) \sim \text{ Ber }(\varvec{x};f(\varvec{z};\theta ))\).

  2. 2.

    In a semi-supervised setting where no informative prior in present, \(\mathbb {H}(q(c|\varvec{x}))\), i.e., the entropy of \(q(c|\varvec{x})\), is commonly used to replace the last term of Eq. 2 for samples with unknown c [9, 10].

  3. 3.

    Implementation based on Tensorflow 1.7.0, keras 2.2.2. Source code available at https://github.com/QingyuZhao/VAE-for-Regression.

References

  1. Benou, A., Veksler, R., Friedman, A., Riklin Raviv, T.: De-noising of contrast-enhanced MRI sequences by an ensemble of expert deep neural networks. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 95–110. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_11

    Chapter  Google Scholar 

  2. Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 161–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_16

    Chapter  Google Scholar 

  3. Zhao, Q., Honnorat, N., Adeli, E., Pfefferbaum, A., Sullivan, E.V., Pohl, K.M.: Variational autoencoder with truncated mixture of gaussians for functional connectivity analysis. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 867–879. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_68

    Chapter  Google Scholar 

  4. Yoo, Y., et al.: Variational autoencoded regression: high dimensional regression of visual data on complex manifold. In: CVPR (2017)

    Google Scholar 

  5. Chen, L., et al.: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images. Inf. Sci. 428, 49–61 (2018)

    Article  Google Scholar 

  6. Higgins, I., et al.: Beta-VAE: learning basic visual concepts with a constrained variational framework. In: ICLR (2017)

    Google Scholar 

  7. Kim, H., Mnih, A.: Disentangling by factorising. In: ICML (2018)

    Google Scholar 

  8. Kingma, D., Welling, M.: Auto-encoding variational bayes. In: ICLR (2013)

    Google Scholar 

  9. Kingma, D.P., Rezende, D.J., Mohamed, S., Welling, M.: Semi-supervised learning with deep generative models. In: NeurIPS (2014)

    Google Scholar 

  10. Nalisnick, E., Smyth, P.: Stick-breaking variational autoencoders. In: ICLR (2017)

    Google Scholar 

  11. Zhuang, F., Cheng, X., Luo, P., Pan, S.J., He, Q.: Supervised representation learning: transfer learning with deep autoencoders. In: IJCAI (2015)

    Google Scholar 

  12. Adeli, E., et al.: Chained regularization for identifying brain patterns specific to HIV infection. Neuroimage 183, 425–437 (2018)

    Article  Google Scholar 

  13. Kaye, J., DeCarli, C., Luxenberg, J., Rapoport, S.: The significance of age-related enlargement of the cerebral ventricles in healthy men and women measured by quantitative computed X-ray tomography. J. Am. Geriatr. Soc. 40(3), 225–231 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by NIH grants AA017347, AA005965, AA010723, and MH113406.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Q., Adeli, E., Honnorat, N., Leng, T., Pohl, K.M. (2019). Variational AutoEncoder for Regression: Application to Brain Aging Analysis. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11765. Springer, Cham. https://doi.org/10.1007/978-3-030-32245-8_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32245-8_91

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32244-1

  • Online ISBN: 978-3-030-32245-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics